精英家教網 > 高中數學 > 題目詳情
已知復數z=(m2-2m-3)+(m2-3m-4)i,求實數m的值使z為純虛數.
分析:如果復數z的實數為0,而虛部不等于0時,復數z表示一個純虛數.由此建立關于m的關系式,解出實數m的值,即可得到本題答案.
解答:解:∵復數z=(m2-2m-3)+(m2-3m-4)i,
∴當z的實數為0,而虛部不為0時,z表示一個純虛數
因此,可得
m2-2m-3=0
m2-3m-4≠0
,解之得m=3(舍去-1)
∴存在m=3,使得z為純虛數.
點評:本題給出含有字母參數m的復數,求m的值使復數為純虛數.著重考查了復數的基本概念和二次方程的解法等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知復數z=(m2-2)+(m-1)i對應的點位于第二象限,則實數m的范圍為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=(m2+5m+6)+(m2-2m-15)i,當實數m為何值時,
(1)z為實數;(2)z為虛數;(3)z為純虛數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=(m2-m-6)+(m2-2m-15)i,m∈R
(1)當m=3時,求|z|;
(2)當m為何值時,z為純虛數;
(3)若復數z在復平面上所對應的點在第四象限,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=(m2-1)+(m2-3m+2)i,求分別滿足下列條件的實數m的值.
(1)z為純虛數;
(2)z在復平面上的對應點在以(0,-3m)為圓心,
17
為半徑的圓上.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=(m2+m-6)+(m2+m-2)i(m∈R)在復平面內所對應的點為A.
(1)若復數z+4m為純虛數,求實數m的值;
(2)若點A在第二象限,求實數M的取值范圍;
(3)求|z|的最小值及此時實數m的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视