【題目】下列說法正確的是( )
A.拋擲一枚硬幣,正面朝上的概率是,所以拋擲兩次一定會出現一次正面朝上的情況
B.某地氣象局預報說,明天本地降水概率為,這說明明天本地有
的區域下雨
C.概率是客觀存在的,與試驗次數無關
D.若買彩票中獎的概率是萬分之一,則買彩票一萬次就有一次中獎
科目:高中數學 來源: 題型:
【題目】“水資源與永恒發展”是2015年聯合國世界水資源日主題.近年來,某企業每年需要向自來水廠繳納水費約4萬元,為了緩解供水壓力,決定安裝一個可使用4年的自動污水凈化設備,安裝這種凈水設備的成本費(單位:萬元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數約為0.2.為了保證正常用水,安裝后采用凈水裝置凈水和自來水廠供水互補的用水模式.假設在此模式下,安裝后該企業每年向自來水廠繳納的水費 C(單位:萬元)與安裝的這種凈水設備的占地面積x(單位:平方米)之間的函數關系是(x≥0,k為常數).記y為該企業安裝這種凈水設備的費用與該企業4年共將消耗的水費之和.
(1) 試解釋的實際意義,請建立y關于x的函數關系式并化簡;
(2) 當x為多少平方米時,y取得最小值?最小值是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的函數f(x)=是奇函數.
(1)求b的值,判斷并用定義法證明f(x)在R上的單調性;
(2)解不等式f(2x+1)+f(x)<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果f(x)是定義在R上的函數,且對任意的x∈R,均有f(-x)≠-f(x),則稱該函數是“X—函數”.
(1)分別判斷下列函數:①y=;②y=x+1;③y=x2+2x-3是否為“X—函數”?(直接寫出結論)
(2)若函數f(x)=x-x2+a是“X—函數”,求實數a的取值范圍;
(3)設“X—函數”f(x)=在R上單調遞增,求所有可能的集合A與B.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足f(x+1)-f(x)=-2x+1,且f(2)=15.
(1)求函數f(x)的解析式;
(2) 令g(x)=(2-2m)x-f(x).
① 若函數g(x)在x∈[0,2]上是單調函數,求實數m的取值范圍;
② 求函數g(x)在x∈[0,2]上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
平面
,
,
,
是棱
上的一點.
(1)若平面
,證明:
;
(2)在(1)的條件下,棱上是否存在點
,使直線
與平面
所成角的大小為
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com