【題目】已知點A(-1,2),B(2,8)及,求點C,D和
科目:高中數學 來源: 題型:
【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調區間;
(2)當k=2時,求證:對于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當x∈(﹣1,x0)時,恒有f(x)>g(x)成立,試求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數越多刺繡越漂亮,現按同樣的規律刺繡(小正方形的擺放規律相同),設第 個圖形包含
個小正方形.
(Ⅰ)求出 ;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出 與
的關系式,并根據你得到的關系式求
的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列 的前
項和為
,且滿足
,求數列
的通項公式.勤于思考的小紅設計了下面兩種解題思路,請你選擇其中一種并將其補充完整.
思路1:先設 的值為1,根據已知條件,計算出
,
,
.
猜想: .
然后用數學歸納法證明.證明過程如下:
①當 時, , 猜想成立
②假設 (
N*)時,猜想成立,即
.
那么,當 時,由已知
,得
.
又 ,兩式相減并化簡,得
(用含
的代數式表示).
所以,當 時,猜想也成立.
根據①和②,可知猜想對任何 N*都成立.
思路2:先設 的值為1,根據已知條件,計算出
.
由已知 ,寫出
與
的關系式:
,
兩式相減,得 與
的遞推關系式:
.
整理: .
發現:數列 是首項為 , 公比為的等比數列.
得出:數列 的通項公式
, 進而得到
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國古代數學家劉徽用圓內接正多邊形的面積去逼近圓的面積求圓周率π,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”下圖是根據劉徽的“割圓術”思想設計的一個程序框圖.若運行該程序,則輸出的n的值為:(參考數據: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)( )
A.48
B.36
C.30
D.24
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市對大學生畢業后自主創業人員給予小額貸款補貼,貸款期限分為6個月、12個月、18個月、24個月、36個月五種,對于這五種期限的貸款政府分別補貼200元、300元、300元、400元、400元,從2016年享受此項政策的自主創業人員中抽取了100人進行調查統計,選取貸款期限的頻數如表:
貸款期限 | 6個月 | 12個月 | 18個月 | 24個月 | 36個月 |
頻數 | 20 | 40 | 20 | 10 | 10 |
以上表中各種貸款期限的頻數作為2017年自主創業人員選擇各種貸款期限的概率.
(Ⅰ)某大學2017年畢業生中共有3人準備申報此項貸款,計算其中恰有兩人選擇貸款期限為12個月的概率;
(Ⅱ)設給某享受此項政策的自主創業人員補貼為X元,寫出X的分布列;該市政府要做預算,若預計2017年全市有600人申報此項貸款,則估計2017年該市共要補貼多少萬元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸、y軸上的截距相等,求切線的方程;
(2)從圓C外一點P(x1 , y1)向圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使|PM|最小的點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com