【題目】第24屆冬季奧林匹克運動會將于2022年在北京-張家口舉行,為了搞好接待工作,組委會在某學院招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高變成如右所示的莖葉圖(單位: ):若身高在
以上(包括
)定義為“高個子”,身高在
以下(不包括
)定義為“非高個子”,且只有“女高個子”才能擔任“禮儀小姐”.
(1)如果分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?
(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔任“禮儀小姐”的人數,試寫出
的分布列,并求
的數學期望.
【答案】(1)(2)見解析,1
【解析】
(1)先根據分層抽樣確定5人中“高個子”和“非高個子”人數,再先求對立事件(都不是“高個子”)概率,最后根據對立事件概率公式求結果;
(2)先確定隨機變量,再分別求對應概率,寫出分布列,最后根據數學期望公式得結果.
解:(1)根據莖葉圖,有“高個子”12人,“非高個子”18人用分層抽樣的方法,每個人被抽中的概率是,所以選中的“高個子”有
人,“非高個子”有
人.用事件
表示“至少有一名高個子”被選中”,則它的對立事件
表示“沒有一名“高個子”被選中”,則
,因此,至少有一人是“高個子”的概率是
.
(2)依題意,的取值為0,1,2,3.
,
,
,
.
因此,的分布列如下:
0 | 1 | 2 | 3 | |
∴.
科目:高中數學 來源: 題型:
【題目】如圖所示,平面CDEF⊥平面ABCD,且四邊形ABCD為平行四邊形,∠DAB=45°,四邊形CDEF為直角梯形,EF∥DC,ED⊥CD,AB=3EF=3,ED=a,AD.
(1)求證:AD⊥BF;
(2)若線段CF上存在一點M,滿足AE∥平面BDM,求的值;
(3)若a=1,求二面角D﹣BC﹣F的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點
為極點,
軸正半軸為極軸建立極坐標系.已知直線
的極坐標方程為
,曲線
的極坐標方程為
.
(1)寫出直線和曲線
的直角坐標方程;
(2)過動點且平行于
的直線交曲線
于
兩點,若
,求動點
到直線
的最近距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
的右焦點為
,過
的直線
與
相交于
兩點,點
滿足
.
(1)當的傾斜角為
時,求直線
的方程;
(2)試探究在軸上是否存在定點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),以原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的方程為
,定點
,點
是曲線
上的動點,
為
的中點.
(1)求點的軌跡
的直角坐標方程;
(2)已知直線與
軸的交點為
,與曲線
的交點為
,若
的中點為
,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinx-xcosx-x,f′(x)為f(x)的導數.
(1)證明:f′(x)在區間(0,π)存在唯一零點;
(2)若x∈[0,π]時,f(x)≥ax,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】時至21世紀.環境污染已經成為世界各國面臨的一大難題,其中大氣污染是目前城市急需應對的一項課題.某市號召市民盡量減少開車出行以綠色低碳的出行方式支持節能減排.原來天天開車上班的王先生積極響應政府號召,準備每天從騎自行車和開小車兩種出行方式中隨機選擇一種方式出行.從即日起出行方式選擇規則如下:第一天選擇騎自行車方式上班,隨后每天用“一次性拋擲6枚均勻硬幣”的方法確定出行方式,若得到的正面朝上的枚數小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.
(1)求王先生前三天騎自行車上班的天數X的分布列;
(2)由條件概率我們可以得到概率論中一個很重要公式——全概率公式.其特殊情況如下:如果事件相互對立并且
,則對任一事件B有
.設
表示事件“第n天王先生上班選擇的是騎自行車出行方式”的概率.
①用表示
;
②王先生的這種選擇隨機選擇出行方式有沒有積極響應該市政府的號召,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】向量集合,對于任意
,以及任意
,都有
,則稱
為“
類集”,現有四個命題:
①若為“
類集”,則集合
也是“
類集”;
②若,
都是“
類集”,則集合
也是“
類集”;
③若都是“
類集”,則
也是“
類集”;
④若都是“
類集”,且交集非空,則
也是“
類集”.
其中正確的命題有________(填所有正確命題的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com