精英家教網 > 高中數學 > 題目詳情

【題目】學校為了解學生在課外讀物方面的支出情況,抽取了n名同學進行調查,結果顯示這些同學的支出都在[10,50)(單位:元),其中支出在[30,50)(單位:元)的同學有67人,其頻率分布直方圖如圖所示,則n的值為(  )

A. 100 B. 120 C. 130 D. 390

【答案】A

【解析】試題分析:根據小矩形的面積之和,算出位于10302組數的頻率之和為0.33,從而得到位于3050的數據的頻率之和為1﹣0.33=0.67,再由頻率計算公式即可算出樣本容量n的值.

解:位于1020、2030的小矩形的面積分別為

S1=0.01×10=0.1,S2=0.023×10=0.23

位于10202030的據的頻率分別為0.1、0.23

可得位于1030的前3組數的頻率之和為0.1+0.23=0.33

由此可得位于3050數據的頻率之和為1﹣0.33=0.67

支出在[3050)的同學有67人,即位于3050的頻數為67,

根據頻率計算公式,可得=0.67,解之得n=100

故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,一個動圓截直線所得的弦長分別為8,4.

(1)求動圓圓心的軌跡方程;

(2)在軌跡上是否存在這樣的點:它到點的距離等于到點的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1,OF2的中點分別為B1B2,且△AB1B2是面積為1的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)點M為該橢圓上任意一點,求|MA|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , , 為棱的中點.

(1)求證: 平面;

(2)若直線與平面所成的角為30°,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(理科)在平面直角坐標系中, 是橢圓上的一個動點,點,則的最大值為( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形的面積可無限逼近圓的面積,并創立了“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,其中表示圓內接正多邊形的邊數,執行此算法輸出的圓周率的近似值依次為 ( )

(參考數據:

A. 2.598,3,3.1048 B. 2.598,3,3.1056

C. 2.578,3,3.1069 D. 2.588,3,3.1108

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(1, ), =(sinx,cosx),設函數f(x)=
(1)求函數f(x)的最小正周期和最大值;
(2)設銳角△ABC的三個內角A,B,C的對邊分別為a,b,c,若c= ,cosB= ,且f(C)= ,求b.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上橫坐標為的點到拋物線頂點的距離與該點到拋物線準線的距離相等。

(1)求拋物線的方程;

(2)設直線與拋物線交于兩點,若,求實數的值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,邊長為2的菱形ABCD中,∠A=60°,E、F分別是BC,DC的中點,G為 BF、DE的交點,若 =

(1)試用 , 表示 , , ;
(2)求 的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视