【題目】為檢測空氣質量,某市環保局隨機抽取了甲、乙兩地2016年20天的PM2.5日平均濃度(單位:微克/立方米)是監測數據,得到甲地PM2.5日平均濃度的頻率分布直方圖和乙地PM2.5日平均濃度的頻數分布表.
甲地20天PM2.5日平均濃度頻率分布直方圖
乙地20天PM2.5日平均濃度頻數分布表
(1)根據乙地20天PM2.5日平均濃度的頻數分布表作出相應的頻率分布直方圖,并通過兩個頻率分布直方圖比較兩地PM2.5日平均濃度的平均值及分散程度;(不要求計算出具體值,給出結論即可)
(2)求甲地20天PM2.5日平均濃度的中位數;
(3)通過調查,該市市民對空氣質量的滿意度從高到低分為三個等級:
記事件:“甲地市民對空氣質量的滿意度等級為不滿意”。根據所給數據,利用樣本估計總體的統計思想,以事件發生的頻率作為相應事件發生的概率,求事件
的概率.
【答案】(1)答案見解析;(2)微克/立方米;(3)0.9.
【解析】分析:(1)做出乙地20天PM2.5日平均濃度的頻率分布直方圖;由圖判斷平均值和數據分散程度。
(2)根據頻率分布直方圖中位數求法,求得頻率為0.5時對應的PM2.5值即可。
(3)先求出甲地市民對空氣質量的滿意度等級為不滿意的概率,再利用對立事件的概率求事件的概率。
詳解:(1)乙地20天PM2.5日平均濃度的頻率分布直方圖如圖所示:
由此可知,甲地PM2.5日平均濃度的平均值低于乙地PM2.5日平均濃度的平均值;而且甲地的數據比較集中,乙地的數據比較分散.
(2)∵甲地PM2.5日平均濃度在之間的頻率為
在之間的頻率為
;
∴,
∴中位數一定在區間之間,設為
,則
,
解得
∴甲地PM2.5日平均濃度的中位數為微克/立方米.
(3)因為當PM2.5日平均濃度超過60微克/立方米時,市民對空氣質量不滿意,
所以
又由對立事件計算公式,得.
科目:高中數學 來源: 題型:
【題目】點到點
,
及到直線
的距離都相等,如果這樣的點恰好只有一個,那么實數
的值是( )
A. B.
C.
或
D.
或
【答案】D
【解析】試題分析:由題意知在拋物線
上,設
,則有
,化簡得
,當
時,符合題意;當
時,
,有
,
,則
,所以選D.
考點:1、點到直線的距離公式;2、拋物線的性質.
【方法點睛】本題考查拋物線的概念、性質以及數形結合思想,屬于中檔題,到點和直線
的距離相等,則
的軌跡是拋物線,再由直線與拋物線的位置關系可求;拋物線的定義是解決物線問題的基礎,它能將兩種距離(拋物線上的點到到焦點的距離、拋物線上的點到準線的距離)進行等量轉化,如果問題中涉及拋物線的焦點和準線,又能與距離聯系起來,那么用拋物線的定義就能解決.
【題型】單選題
【結束】
13
【題目】在極坐標系中,已知兩點,
,則
,
兩點間的距離為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發芽數y(顆) | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這5組數據中選取2組,用剩下的3組數據求回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰的2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求y關于x的線性回歸方程
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(附:對于一組數據(x1,y1),(x2,y2),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有1個紅球和2個白球,這3個球除顏色外完全相同,有放回地連續抽取2次,每次從中任意抽取出1個球,則:
(1)第一次取出白球,第二次取出紅球的概率;
(2)取出的2個球是1紅1白的概率;
(3)取出的2個球中至少有1個白球的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題中正確的是( ).
①若一個平面內的兩條直線與另一個平面都平行,那么這兩個平面互相平行;
②若一條直線和兩個平行平面中的一個平面垂直,那么這條直線也和另一個平面垂直;
③若一條直線和兩個互相垂直的平面中的一個平面垂直,那么這條直線一定平行于另一個平面;
④若兩個平面垂直,那么,一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.
A. ②和④ B. ②和③ C. ③和④ D. ①和②
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱柱的底面
是菱形,
,
,
.
(Ⅰ)證明:平面平面
;
(Ⅱ)若,直線
上是否存在點
,使得
與平面
所成角的正弦值為
.若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某市實驗中學校領導審時度勢,深化教育教學改革,經過師生共同努力,高考成績碩果累累,捷報頻傳,尤其是2017年某著名高校在全國范圍內錄取的大學生中就有25名來自該中學.下表為該中學近5年被錄取到該著名高校的學生人數.(記2013年的年份序號為1,2014年的年份序號為2,依此類推……)
年份序號 | 1 | 2 | 3 | 4 | 5 |
錄取人數 | 10 | 13 | 17 | 20 | 25 |
(1)求關于
的線性回歸方程,并估計2018年該中學被該著名高校錄取的學生人數(精確到整數);
(2)若在第1年和第4年錄取的大學生中按分層抽樣法抽取6人,再從這6人中任選2人,求這2人中恰好有一位來自第1年的概率.
參考數據:,
.
參考公式:,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com