【題目】隨著網絡和智能手機的普及與快速發展,許多可以解答各學科問題的搜題軟件走紅.有教育工作者認為:網搜答案可以起到拓展思路的作用,但是對多數學生來講,容易產生依賴心理,對學習能力造成損害.為了了解網絡搜題在學生中的使用情況,某校對學生在一周時間內進行網絡搜題的頻數進行了問卷調查,并從參與調查的學生中抽取了男、女學生各人進行抽樣分析,得到如下樣本頻數分布表:
一周時間內進行網絡搜題的頻數區間 | 男生頻數 | 女生頻數 |
18 | 4 | |
10 | 8 | |
12 | 13 | |
6 | 15 | |
4 | 10 |
將學生在一周時間內進行網絡搜題頻數超過次的行為視為“經常使用網絡搜題”,不超過20次的視為“偶爾或不用網絡搜題”.
(1)根據已有數據,完成下列列聯表(單位:人)中數據的填寫,并判斷是否在犯錯誤的概率不超過
%的前提下有把握認為使用網絡搜題與性別有關?
經常使用網絡搜題 | 偶爾或不用絡搜題 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)將上述調查所得到的頻率視為概率,從該校所有參與調查的學生中,采用隨機抽樣的方法每次抽取一個人,抽取人,記經常使用網絡搜題的人數為
,若每次抽取的結果是相互獨立的,求隨機變量
的分布列和數學期望.
參考公式:,其中
.
參考數據:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)填表見解析,在犯錯誤的概率不超過%的前提下有把握認為使用網絡搜題與性別有關;(2)分布列見解析,
.
【解析】
(1)根據題意填寫列聯表,計算觀測值,對照臨界值得出結論;
(2)由題意,由此求出隨機變量
的分布列和數學期望.
(1)根據題意填寫列聯表如下:
經常使用網絡搜題 | 偶爾或不用網絡搜題 | 合計 | |
男生 | 22 | 28 | 50 |
女生 | 38 | 12 | 50 |
合計 | 60 | 40 | 100 |
計算觀測值
,
所以在犯錯誤的概率不超過%的前提下有把握認為使用網絡搜題與性別有關.
(2)將上述調查所得到的頻率視為概率,從該校所有參與調查的學生中,采用隨機抽樣的方法抽取一人,抽到經常使用網絡搜題的學生的概率為.
由題意.
,
,
,
,
的分布列為:
0 | 1 | 2 | 3 | 4 | |
.
科目:高中數學 來源: 題型:
【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數學家、天文歷算家,在他多達百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學者王子。他對文藝的最大貢獻是他創建了“十二平均律”,此理論被廣泛應用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽為“鋼琴理論的鼻祖”!笆骄伞笔侵敢粋八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設第二個音的頻率為,第八個音的頻率為
,則
等于
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:,O為坐標原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若
OMN為直角三角形,則|MN|=
A. B. 3 C.
D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐的底面ABCD是菱形,
平面ABCD,
,
,F,G分別為PD,BC中點,
.
(Ⅰ)求證:平面PAB;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求證:OP與AB不垂直.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大學生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至12月份銷售某種機械配件的銷售量及銷售單價進行了調查,銷售單價和銷售量
之間的一組數據如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
銷售單價 | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量 | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據7至11月份的數據,求出關于
的回歸直線方程;
(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程,其中
,參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業經過短短幾年的發展,員工近百人.不知何因,人員雖然多了,但員工的實際工作效率還不如從前.年
月初,企業領導按員工年齡從企業抽選
位員工交流,并將被抽取的員工按年齡(單位:歲)分為四組:第一組
,第二組
,第三組
,第四組
,且得到如下頻率分布直方圖:
(1)求實數的值;
(2)若用簡單隨機抽樣方法從第二組、第三組中再隨機抽取人作進一步交流,求“被抽取得
人均來自第二組”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線與橢圓
交于
,
兩點,已知
,
,若橢圓的離心率
,又經過點
,
為坐標原點.
(1)求橢圓的方程;
(2)當時,試問:
的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com