【題目】設函數f(x)=|2x+3|+|x﹣1|.
(1)解不等式f(x)>4;
(2)若x∈(﹣∞,﹣ ),不等式a+1<f(x)恒成立,求實數a的取值范圍.
【答案】
(1)解:∵f(x)=|2x+3|+|x﹣1|,
∴f(x)= ,
f(x)>4 或
或
x<﹣2或0<x≤1或x>1,
綜上,不等式f(x)>4的解集是:(﹣∞,﹣2)∪(0,+∞);
(2)解:由(1)得:x<﹣ 時,f(x)=﹣3x﹣2,
∵x<﹣ 時,f(x)=﹣3x﹣2>
,
∴a+1≤ ,解得:a≤
,
∴實數a的范圍是(﹣∞, ].
【解析】(1)求出函數f(x)的分段函數的形式,通過討論x的范圍得到關于x的不等式組,解出取并集即可;(2)x<﹣ 時,f(x)=﹣3x﹣2>
,問題轉化為a+1≤
,求出a的范圍即可.
【考點精析】掌握絕對值不等式的解法是解答本題的根本,需要知道含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】下列共有四個命題: ⑴命題“ ”的否定是“x∈R,x2+1<3x”;
⑵在回歸分析中,相關指數R2為0.96的模型比R2為0.84的模型擬合效果好;
⑶a,b∈R, ,則p是q的充分不必要條件;
⑷已知冪函數f(x)=(m2﹣3m+3)xm為偶函數,則f(﹣2)=4.
其中正確的序號為 . (寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在區間(0,ln3)上具有相同的單調性,求實數a的取值范圍;
(2)若a∈(﹣∞,﹣ ],且函數g(x)=xeax﹣1﹣2ax+f(x)的最小值為M,求M的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 與拋物線y2=2px(p>0)共焦點F2 , 拋物線上的點M到y軸的距離等于|MF2|﹣1,且橢圓與拋物線的交點Q滿足|QF2|=
. (Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)過拋物線上的點P作拋物線的切線y=kx+m交橢圓于A、B兩點,求此切線在x軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當今,手機已經成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經嚴重影響了人們的生活,一媒體為調查市民對低頭族的認識,從某社區的500名市民中,隨機抽取n名市民,按年齡情況進行統計的得到頻率分布表和頻率分布直方圖如下:
組數 | 分組(單位:歲) | 頻數 | 頻率 |
1 | [20,25) | 5 | 0.05 |
2 | [25,30) | 20 | 0.20 |
3 | [30,35) | a | 0.35 |
4 | [35,40) | 30 | b |
5 | [40,45] | 10 | 0.10 |
合計 | n | 1.00 |
(1)求出表中的a,b,n的值,并補全頻率分布直方圖;
(2)媒體記者為了做好調查工作,決定從所隨機抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在[30,40)的選取2名擔任主要發言人.記這2名主要發言人年齡在[35,40)的人數為ξ,求ξ的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),離心率為
,兩焦點分別為F1、F2 , 過F1的直線交橢圓C于M,N兩點,且△F2MN的周長為8.
(1)求橢圓C的方程;
(2)過點P(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點,求弦長|AB|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD為平行四邊形,若∠DAB=60°,AB=2,AD=1.
(1)求證:PA⊥BD;
(2)若∠PCD=45°,求點D到平面PBC的距離h.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com