精英家教網 > 高中數學 > 題目詳情

【題目】在三棱柱 中, 平面 ,其垂足 落在直線 上.

(1)求證: ;

(2)若 的中點,求三棱錐 的體積.

【答案】(1)見解析

(2)

【解析】

(Ⅰ)欲證BC⊥A1B,可尋找線面垂直,而A1A⊥BC,AD⊥BC.又AA1平面A1AB,AD平面A1AB,A1A∩AD=A,根據線面垂直的判定定理可知BC⊥平面A1AB,問題得證;(Ⅱ)根據直三棱柱的性質可知A1A⊥面BPC,求三棱錐P﹣A1BC的體積可轉化成求三棱錐A1﹣PBC的體積,先求出三角形PBC的面積,再根據體積公式解之即可.

(Ⅰ)∵三棱柱ABC﹣A1B1C1為直三棱柱,

∴A1A⊥平面ABC,又BC平面ABC,

∴A1A⊥BC

∵AD⊥平面A1BC,且BC平面A1BC,

∴AD⊥BC.又AA1平面A1AB,

AD平面A1AB,A1A∩AD=A,

∴BC⊥平面A1AB,

A1B平面A1BC,

∴BC⊥A1B;

(Ⅱ)在直三棱柱ABC﹣A1B1C1中,A1A⊥AB.

∵AD⊥平面A1BC,其垂足D落在直線A1B上,

∴AD⊥A1B.

Rt∠△ABD中,,AB=BC=2,

= ,∠ABD=60°,

Rt∠△ABA1中,AA=AB tan60=2

由(Ⅰ)知BC⊥平面A1AB,AB平面A1AB,

從而BC⊥AB,=AB BC= 22=2.

∵PAC的中點,=S =1

= =.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某企業生產,兩種產品,根據市場調查與預測,產品的利潤與投資成正比,其關系如圖1,產品的利潤與投資的算術平方根成正比,其關系如圖2,(注:利潤與投資單位:萬元)

1)分別將,兩種產品的利潤表示為投資的函數關系,并寫出它們的函數關系式;

2)該企業已籌集到10萬元資金,全部投入到兩種產品的生產,怎樣分配資金,才能使企業獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確的個數①“”的否定是“,”;②用相關指數可以刻畫回歸的擬合效果,值越小說明模型的擬合效果越好;③命題“若,則”的逆命題為真命題;④若的解集為,則.

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2018·江西六校聯考)ABC中,角A,B,C所對的邊分別為a,b,c,a=4,b=4,cosA=-.

(1)求角B的大;

(2)f(x)=cos2x+sin2(x+B),求函數f(x)的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三個頂點坐標分別為:,直線經過點.

1)求外接圓的方程;

2)若直線相切,求直線的方程;

3)若直線相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線軸分別交于兩點.

①設直線斜率分別為,證明存在常數使得,并求出的值;

②求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量,,,,函數,的最小正周期為

(1)求的單調增區間;

(2)方程;在上有且只有一個解,求實數n的取值范圍;

(3)是否存在實數m滿足對任意x1∈[-1,1],都存在x2R,使得++m-)+1>fx2)成立.若存在,求m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標柱.已知起始柱上套有個圓盤,較大的圓盤都在較小的圓盤下面.現把圓盤從起始柱全部移到目標柱上,規則如下:每次只能移動一個圓盤,且每次移動后,每根柱上較大的圓盤不能放在較小的圓盤上面,規定一個圓盤從任一根柱上移動到另一根柱上為一次移動.若將個圓盤從起始柱移動到目標柱上最少需要移動的次數記為,則( )

A. 33B. 31C. 17D. 15

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】13分){an}是公比為正數的等比數列a1=2,a3=a2+4

)求{an}的通項公式;

)設{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视