精英家教網 > 高中數學 > 題目詳情

【題目】已知點是圓上任意一點,點與點關于原點對稱,線段的垂直平分線與交于.

(1)求點的軌跡的方程;

(2)過點的動直線與點的軌跡交于兩點,在軸上是否存在定點使以為直徑的圓恒過這個點?若存在,求出點的坐標;若不存在,請說明理由.

【答案】(1) (2)軸上存在定點,使以為直徑的圓恒過這個點.

【解析】試題分析:(1)由圓的方程求出F1、F2的坐標,結合題意可得點M的軌跡C為以F1,F2為焦點的橢圓,并求得a,c的值,再由隱含條件求得b,則橢圓方程可求;

(2)直線l的方程可設為,設A(x1,y1),B(x2,y2),聯立直線方程與橢圓方程,化為關于x的一元二次方程,利用根與系數的關系求出A,B橫坐標的和與積,假設在y軸上是否存在定點Q(0,m),使以AB為直徑的圓恒過這個點,可得.利用向量的坐標運算即可求得m值,即定點Q得坐標.

試題解析:

解:(1)由題意得,

∴點的軌跡為以為焦點的橢圓

,

∴點的軌跡的方程為.

(2)當直線的斜率存在時,可設其方程為,設

聯立可得

由求根公式可得

假設在軸上存在定點,使以為直徑的圓恒過這個點,

,

,

解得

∴在軸上存在定點,使以為直徑的圓恒過這個點.

當直線的斜率不存在時,經檢驗可知也滿足以為直徑的圓恒過點.

因此在軸上存在定點,使以為直徑的圓恒過這個點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,圓 軸的正半軸交于點,以為圓心的圓 )與圓交于 兩點.

(1)若直線與圓切于第一象限,且與坐標軸交于 ,當直線長最小時,求直線的方程;

(2)設是圓上異于, 的任意一點,直線分別與軸交于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據《中國新聞網》10月21日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區選擇了3600人調查,就是否“取消英語聽力”的問題,調查統計的結果如下表:

態度
調查人群

應該取消

應該保留

無所謂

在校學生

2100人

120人

y人

社會人士

600人

x人

z人

已知在全體樣本中隨機抽取1人,抽到持“應該保留”態度的人的概率為0.05.
(Ⅰ)現用分層抽樣的方法在所有參與調查的人中抽取360人進行問卷訪談,問應在持“無所謂”態度的人中抽取多少人?
(Ⅱ)在持“應該保留”態度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列{an}中,設f(n)=an , 且f(n)滿足f(n+1)﹣2f(n)=2n(n∈N*),且a1=1.
(1)設 ,證明數列{bn}為等差數列;
(2)求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將參加夏令營的600名學生編號為:001,002,…,600,采用系統抽樣的方法抽取一個容量為50的樣本,且隨機抽得的編號為003.600名學生分住在3個營區,001300住在第1營區,301495住在第2營區,496600住在第3營區,3個營區被抽中的人數依次為(  )

A. 26,16,8 B. 25,16,9

C. 25,17,8 D. 24,17,9

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】銀川一中從高二年級學生中隨機抽取40名學生作為樣本,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六組:后得到如圖的頻率分布直方圖.

(1)求圖中實數的值;

(2)試估計我校高二年級在這次數學考試的平均分;

(3)若從樣本中數學成績在兩個分數段內的學生中隨機選取兩名學生,求這兩名學生的數學成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)若曲線處的切線的方程為,求實數的值;

(2)設,若對任意兩個不等的正數,都有恒成立,求實數的取值范圍;

(3)若在上存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行如圖所示的程序框圖,如果輸出的,那么判斷框中填入的條件可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側面ABC是等腰直角三角形,∠EBC=ABC=90°,BC=CD=2BE=2,點M是棱AD的中點

(I)證明:平面AED⊥平面ACD;

()求銳二面角B-CM-A的余弦值

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视