如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A,B,M為拋物線弧AB上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求的最大值
(1);(2)
.
解析試題分析:本題主要考查拋物線的標準方程及性質、點到直線的距離、兩點間距離公式、韋達定理等數學知識,考查學生分析問題解決問題的能力和計算能力,考查數形結合思想.第一問,由已知條件得到直線AB的方程與拋物線聯立,消參得到關于x的方程,求出兩根之和,由拋物線的定義得|AB|的值,從而求出P的值;第二問,直線與拋物線聯立消去x,解出y,設出M點坐標,則可得到的取值范圍,利用點到直線的距離公式列出距離,由于點在直線上方,所以
,再化簡距離的表達式,通過配方求最值,從而得到M點坐標,即可得到
的面積.
試題解析:(1)由條件知lAB:,則
,消去y得
,則x1+x2=3p,由拋物線定義得|AB|=x1+x2+p=4p.
又因為|AB|=8,即p=2,則拋物線的方程為.(5分)
(2)由(1)知|AB|=4p,且lAB:,
,消x得:
,即
,
設,則
,
M到AB的距離,因為點M在直線AB的上方,所以
,
所以,
當時,
.
則.(12分)
考點:1.拋物線的標準方程及性質;2.點到直線的距離;3.兩點間距離公式.
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓C的方程為+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個頂點.
(1)設P是橢圓C上任意一點,若=m
+n
,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩個動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,正方形ABCD內接于橢圓=1(a>b>0),且它的四條邊與坐標軸平行,正方形MNPQ的頂點M、N在橢圓上,頂點P、Q在正方形的邊AB上,且A、M都在第一象限.
(1)若正方形ABCD的邊長為4,且與y軸交于E、F兩點,正方形MNPQ的邊長為2.
①求證:直線AM與△ABE的外接圓相切;
②求橢圓的標準方程;
(2)設橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
是否同時存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點在軸上的雙曲線漸近線方程為
;
(2)點到雙曲線上動點
的距離最小值為
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓C:的離心率為
,短軸長是2.
(1)求a,b的值;
(2)設橢圓C的下頂點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,當時,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:+
=1(a>b>0),左、右兩個焦點分別為F1,F2,上頂點A(0,b),△AF1F2為正三角形且周長為6.
(1)求橢圓C的標準方程及離心率;
(2)O為坐標原點,P是直線F1A上的一個動點,求|PF2|+|PO|的最小值,并求出此時點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com