【題目】已知函數的最小值為0,其中
,設
.
(1)求的值;
(2)對任意,
恒成立,求實數
的取值范圍;
(3)討論方程在
上根的個數.
【答案】(1);(2)
;(3)由圖像知
時有一個根,
時無根.
【解析】
試題分析:(1)首先求出函數的定義域,并求出其導函數,然后令求出極值點,并判斷導函數的符號進而得出函數取得極值,進而得出其最小值,即可得出結果;(2)首先將問題轉化為
對
恒成立,于是構造函數
,再利用導數判斷其單調性,最后得出實數
的取值范圍;(3)首先將問題轉化為
,然后轉化為
,最后利用導數和函數的圖像即可得出所求的結果
試題解析:(1)的定義域為
.
由,解得x=1-a>-a.
當x變化時,,
的變化情況如下表:
x | (-a,1-a) | 1-a | (1-a,+∞) |
- | 0 | + | |
極小值 |
因此,在
處取得最小值,故由題意
,所以
.
(2)由知
對
恒成立
即是
上的減函數.
對
恒成立,
對
恒成立
,
(3)由題意知,
由圖像知時有一個根,
時無根
或解: ,
,又可求得
時
.
在
時 單調遞增.
時,
,
時有一個根,
時無根.
科目:高中數學 來源: 題型:
【題目】從某小區隨機抽取40個家庭,收集了這40個家庭去年的月均用水量(單位:噸)的數據,整理得到頻數分布表和頻率分布直方圖.
(1)求頻率分布直方圖中的值;
(2)從該小區隨機選取一個家庭,試估計這個家庭去年的月均用水量不低于6噸的概率;
(3)在這40個家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個容量為7的樣本,將該樣本看成一個總體,從中任意選取2個家庭,求其中恰有一個家庭的月均用水量不低于8噸的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以,
,
,
,
,
,
分組的頻率分布直方圖如圖:
(Ⅰ)求直方圖中的值;
(Ⅱ)求月平均用電量的眾數和中位數;
(Ⅲ)在月平均用電量為,
,
,
的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在
的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編號為
,采用系統抽樣的方法抽取一個容量為
的樣本,且抽到的最小號碼為
,已知這
名學生分住在三個營區,從
到
在第一營區,從
到
在第二營區,從
到
在第三營區,則第一、第二、第三營區被抽中的人數分別為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若,求函數
的圖象在
處的切線方程;
(2)若,試討論方程
的實數解的個數;
(3)當時,若對于任意的
,都存在
,使得
,求滿足條件的正整數
的取值的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】成等差數列的三個正數的和等于15,并且這三個數分別加上2、5、13后成為等比數列{bn}中的b3、b4、b5.
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)數列{bn}的前n項和為Sn,求證:數列{Sn+}是等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實數a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數y=f(x)對于任意的x都滿足f(x+1)=-f(x),當-1≤x<1時,f(x)=x3,若函數g(x)=f(x)-loga|x|至少有6個零點,則a的取值范圍是( )
A. ∪(5,+∞) B.
∪
C. ∪(5,7) D.
∪[5,7)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據微信同程旅游的調查統計顯示,參與網上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個年齡段的網上購票人數成等差數列,求的值;
(2)為鼓勵大家網上購票,該平臺常采用購票就發放酒店入住代金券的方法進行促銷,具體做法如下:
年齡在歲的每人發放20元,其余年齡段的每人發放50元,先按發放代金券的金額采用分層抽樣的方式從參與調查的1000位網上購票者中抽取5人,并在這5人中隨機抽取3人進行回訪調查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com