(本題滿分12分)
如圖的多面體是底面為平行四邊形的直四棱柱ABCD—,經平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°。AB=2AD=2.∠BAD=60。.
(I)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.
(Ⅰ)證明:在△BAD中,AB=2AD=2,∠BAD=60°,
由余弦定理得,BD=
AD⊥BD ----------------------------(2分)
又GD⊥平面ABCD
∴GD⊥BD,
GDAD=D,
∴BD⊥平面ADG……………………4分
(Ⅱ)解:以D為坐標原點,OA為x軸,OB為y軸,OG為z軸建立空間直角坐標系D—xyz
則有A(1,0,0),B(0,,0),G(0,0,1),E(0,
)
-------------------------------(6分)
設平面AEFG法向量為
則
取 --------------------------------(9分)
平面ABCD的一個法向量 -------------------------(10分)
設面ABFG與面ABCD所成銳二面角為,
則
---------------------------------------(12
【解析】略
科目:高中數學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數學 來源:2012-2013學年上海市金山區高三上學期期末考試數學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年安徽省高三10月月考理科數學試卷(解析版) 題型:解答題
(本題滿分12分)
設函數(
,
為常數),且方程
有兩個實根為
.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年重慶市高三第二次月考文科數學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形
是邊長為
的正方形,
,
為
上的點,且
⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com