設函數f(x)=x2+bx+c,其中b、c是某范圍內的隨機數,分別在下列條件下,求事件A“f(1)≤5且f(0)≤3”發生的概率.
(1)若隨機數b,c∈{1,2,3,4};
(2)已知隨機函數Rand()產生的隨機數的范圍為{x|0≤x≤1},b,c是算法語句b=4*Rand()和c=4*Rand()的執行結果.(注:符號“*”表示“乘號”)
科目:高中數學 來源: 題型:解答題
甲乙兩個同學進行定點投籃游戲,已知他們每一次投籃投中的概率均為,且各次投籃的結果互不影響.甲同學決定投5次,乙同學決定投中1次就停止,否則就繼續投下去,但投籃次數不超過5次.
(1)求甲同學至少有4次投中的概率;
(2)求乙同學投籃次數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某地位于甲、乙兩條河流的交匯處,根據統計資料預測,今年汛期甲河流發生洪水的概率為0.25,乙河流發生洪水的概率為0.18(假設兩河流發生洪水與否互不影響).現有一臺大型設備正在該地工作,為了保護設備,施工部門提出以下三種方案:
方案1:運走設備,此時需花費4000元;
方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發生的洪水,當兩河流同時發生洪水時,設備仍將受損,損失約56000元;
方案3:不采取措施,此時,當兩河流都發生洪水時損失達60000元,只有一條河流發生洪水時,損失為10000元.
(1)試求方案3中損失費X(隨機變量)的分布列;
(2)試比較哪一種方案好.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知直線l1:x-2y-1=0,直線l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1) 求直線l1與l2相交的概率;
(2) 求直線l1與l2的交點位于第一象限的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
生活富裕了,農民也健身啦,一天,一農民夫婦帶著小孩共3人在新農村健身房玩傳球游戲,持球者將球等可能的傳給其他2人,若球首先從父親傳出,經過4次傳球.
(1)求球恰好回到父親手中的概率;
(2)求小孩獲球(獲得他人傳來的球)的次數為2次的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
判斷下列命題正確與否.
(1)先后擲兩枚質地均勻的硬幣,等可能出現“兩個正面”“兩個反面”“一正一反”三種結果;
(2)某袋中裝有大小均勻的三個紅球、兩個黑球、一個白球,任取一球,那么每種顏色的球被摸到的可能性相同;
(3)從-4,-3,-2,-1,0,1,2中任取一數,取到的數小于0與不小于0的可能性相同;
(4)分別從3名男同學、4名女同學中各選一名代表,男、女同學當選的可能性相同.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函數圖象上的九個點,在這九個點中隨機取出兩個點P1(x1,y1),P2(x2,y2),
(1)求P1,P2兩點在雙曲線xy=6上的概率;
(2)求P1,P2兩點不在同一雙曲線xy=k(k≠0)上的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A、B、C三個箱子中各裝有兩個完全相同的球,每個箱子里的球,有一個球標著號碼1,另一個球標著號碼2.現從A、B、C三個箱子中各摸出一個球.
(1)若用數組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數組(x,y,z)的所有情形,并回答一共有多少種;
(2)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數獲獎的可能性最大?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com