精英家教網 > 高中數學 > 題目詳情
如圖,平面,,的中點,則的大小關系是(     )
A.B.
C.D.不確定
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

、(本題12分)在正方體
求證:(1)對角線⊥平面。
(2)與平面的交點H是的外心。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(16分)如圖,四棱錐S-ABCD的底面是正方形,每條側棱的長都是地面邊長的倍,
P為側棱SD上的點。
(Ⅰ)求證:ACSD;       
(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的條件下,側棱SC上是否存在一點E,使得BE∥平
面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(13分)如圖,在四棱錐中,底面是菱形,的中點,的中點.


(Ⅰ)證明:平面平面;
(Ⅱ)證明:直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在如圖所示的幾何體中,平面,,的中點,
,
(Ⅰ)證明平面;
(Ⅱ)求二面角的余弦值.

圖7

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
  如圖,在四棱錐中,底面ABCD是正方形,側棱底面ABCD,,E是PC的中點,作交PB于點F。
  (I)證明平面;
  (II)證明平面EFD;
  (III)求二面角的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

 如圖,已知正方體的棱長為2,點分別為的中點.

(Ⅰ)求異面直線CM所成角的余弦值;
(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如右圖1,在四棱錐中,底面是正方形,中點,若,,,(  )

A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設a,b,c是三條不同直線,,,是三個不同平面,給出下列命題:
①若,,則
②若a,b異面,,,,則;
③若,,,且,則;
④若a,b為異面直線,,,則
其中正確的命題是                  

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视