精英家教網 > 高中數學 > 題目詳情
已知定點A、B,且,動點P滿足,則點的軌跡為(  )
A. 雙曲線    B. 雙曲線一支    C.兩條射線   D. 一條射線
B

試題分析:的幾何意義是:點P到定點A、B距離之差為定值1(小于),所以點的軌跡為雙曲線一支,故選B。
點評:基礎題,理解雙曲線的定義必須全面。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)過點(1,0)直線交拋物線于A(x1,y1),B(x2,y2)兩點,拋物線的頂點是
(ⅰ)證明:為定值;
(ⅱ)若AB中點橫坐標為2,求AB的長度及的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點),過點作一直線交橢圓于、兩點 .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設點為點關于軸的對稱點,判斷的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設曲線與拋物線的準線圍成的三角形區域(包含邊界)為,內的一個動點,則目標函數的最大值為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線的離心率為,則它的漸近線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知平面經過點,且是它的一個法向量. 類比曲線方程的定義以及求曲線方程的基本步驟,可求得平面的方程是        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
中心在原點,長半軸長與短半軸長的和為9,離心率為0.6,求橢圓的標準方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知雙曲線與橢圓有相同焦點,且經過點,
求該雙曲線方程,并求出其離心率、漸近線方程,準線方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求與橢圓有共同焦點,且過點(0,2)的雙曲線方程,并且求出這條雙曲線的實軸長、焦距、離心率以及漸近線方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视