精英家教網 > 高中數學 > 題目詳情

在拋物線上,求一點P,使P到直線的距離最短,并求距離的最小值.

 

【答案】

即為最小值.

【解析】

試題分析:解:設與平行并且與相切的直線為,切點為,

,消去

,得

所以兩平行線間的距離即為所求的最小值.

代入,即得即為最小值.

即得點

考點:本題主要考查拋物線的標準方程及幾何性質,直線與拋物線的位置關系。

點評:基礎題型,解答此類問題,一般兩種思路,一是建立距離的函數表達式,二是數形結合,本解法如此。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:044

在拋物線上,求一點P(    ,   )使P到焦點F與到點A(32)的距離之和為最。

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線有光學性質: 由其焦點射出的光線經拋物線折射后,沿平行于拋物線對稱軸的方向射出,今有拋物線y2=2px(p>0)  一光源在點M(,4)處,由其發出的光線沿平行于拋物線的軸的方向射向拋物線上的點P,折射后又射向拋物線上的點Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l: 2x-4y-17=0上的點N,再折射后又射回點M(如下圖所示)

 (1)設PQ兩點坐標分別為(x1,y1)、(x2,y2),證明:y1·y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點,使該點與點M關于PN所在的直線對稱?若存在,請求出此點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線有光學性質:由其焦點射出的光線經拋物線折射后,沿平行于拋物線對稱軸的方向射出,今有拋物線y2=2px(p>0).一光源在點M(,4)處,由其發出的光線沿平行于拋物線的軸的方向射向拋物線上的點P,折射后又射向拋物線上的點Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l:2x-4y-17=0上的點N,再折射后又射回點M(如圖所示).

(1)設P、Q兩點坐標分別為(x1,y1)、(x2,y2),證明y1·y2=-p2

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點,使該點與點M關于PN所在的直線對稱?若存在,請求出此點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線有光學性質:由其焦點射出的光線經拋物線折射后,沿平行于拋物線對稱軸的方向射出.今有拋物線y2=2px(p>0),一光源在點M(,4)處,由其發出的光線沿平行于拋物線對稱軸的方向射向拋物線上的點P,折射后又射向拋物線上的點Q,再折射后,又沿平行于拋物線對稱軸的方向射出,途中遇到直線l:2x-4y-17=0上的點N,再折射后又射回點M(如圖所示).

(1)設P、Q兩點的坐標分別為(x1,y1),(x2,y2),證明:y1y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點,使該點與點M關于PN所在的直線對稱?若存在,請求出此點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视