已知拋物線及點
,直線
斜率為1且不過點
,與拋物線交于點A,B,
(1) 求直線在
軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C、D,證明:AD,BC交于定點.
科目:高中數學 來源: 題型:解答題
已知橢圓和圓
:
,過橢圓上一點P引圓O的兩條切線,切點分別為A,B.
(1)(。┤魣AO過橢圓的兩個焦點,求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點P,使得,求橢圓離心率e的取值范圍;
(2)設直線AB與x軸、y軸分別交于點M,N,問當點P在橢圓上運動時,是否為定值?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在坐標原點焦點在軸上的橢圓C,其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,直線m垂直于
軸(垂足為T),與拋物線交于不同的兩點P、Q,且
.
(Ⅰ)求點T的橫坐標;
(Ⅱ)若橢圓C以F1,F2為焦點,且F1,F2及橢圓短軸的一個端點圍成的三角形面積為1.
① 求橢圓C的標準方程;
② 過點F2作直線l與橢圓C交于A,B兩點,設,若
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左頂點
,過右焦點
且垂直于長軸的弦長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線
與橢圓交于點
,與
軸交于點
,過原點與
平行的直線與橢圓交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左焦點F為圓
的圓心,且橢圓上的點到點F的距離最小值為
。
(I)求橢圓方程;
(II)已知經過點F的動直線與橢圓交于不同的兩點A、B,點M(
),證明:
為定值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
拋物線的準線與
軸交于
,焦點為
,若橢圓
以
、
為焦點、且離心率為
.
(1)當時,求橢圓
的方程;
(2)若拋物線與直線
及
軸所圍成的圖形的面積為
,求拋物線
和直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com