【題目】在如圖所示的幾何體中,四邊形是等腰梯形,
∥
,
平面
.
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的余弦值.
【答案】:(Ⅰ)見解析;(Ⅱ)
【解析】
試題分析:(1)要證明直線和平面垂直,只需證明直線和平面內的兩條相交直線垂直.由已知得,故只需證明
,在
中,由余弦定理得
的關系,即
的關系確定,在
中,結合已知條件
可判定
是直角三角形,且
,從而可證明BD⊥平面AED;(2)求二面角
,可先找后求,過
作
,由已知FC⊥平面ABCD,得
面
,故
,
,故
為二面角F—BD—C的平面角,在
中計算
.
(1)在等腰梯形ABCD中,AB∥CD,∠DAB= 60°,,由余弦定理可知,
,即
,在
中,
,
,則
是直角三角形,且
,又
,且
,故BD⊥平面AED.
(2)過作
,交
于點
,因為FC⊥平面ABCD,
面
,所以
,所以
面
,因此
,
,故
為二面角F—BD—C的平面角.
在中,
,可得
因此. 即二面角F—BD—C的正切值為2.
科目:高中數學 來源: 題型:
【題目】為美化環境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個花壇中,余下的2種花種在另一個花壇中,則紅色和紫色的花不在同一花壇的概率是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣a|+|2x﹣1|(a∈R).
(1)當a=﹣1時,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合 ,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ex﹣ax,a是常數.
(Ⅰ)若a=1,且曲線y=f(x)的切線l經過坐標原點(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求曲線在點
處的切線方程;
(2)設,計算
的導數.
【答案】(1).(2)
.
【解析】試題分析:(1)由導數的基本定義就出斜率,根據點斜式寫出切線方程;(2)
,
.
試題解析:
(1),則
,
又,∴所求切線方程為
,即
.
(2),
.
【題型】解答題
【結束】
18
【題目】對某校高一年級學生參加社區服務次數進行統計,隨機抽取名學生作為樣本,得到這
名學生參加社區服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:
(1)求出表中及圖中
的值;
(2)若該校高一學生有800人,試估計該校高一學生參加社區服務的次數在區間內的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和Sn滿足 ,且a1 , a2+6,a3成等差數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn= ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知半徑為1的動圓與定圓(x-5)2+(y+7)2=16相切,則動圓圓心的軌跡方程是( )
A. (x-5)2+(y+7)2=25
B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C. (x-5)2+(y+7)2=9
D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面上動點M到直線x=﹣1的距離比它到點F(2,0)的距離少1.
(1)求動點M的軌跡E的方程;
(2)已知點B(﹣1,0),設過點(1,0)的直線l與軌跡E交于不同的兩點P、Q,證明:x軸是∠PBQ的角平分線所在的直線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com