【題目】已知等差數列{an}的前n項和為Sn , 且S6=5S2+18,a3n=3an , 數列{bn}滿足b1b2…bn=4Sn . (Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)令cn=log2bn , 且數列 的前n項和為Tn , 求T2016 .
【答案】解:(Ⅰ)設數列{an}的公差為d, 則
由(1)得2a1﹣5d+9=0,
由(2)得a1=d,聯立得a1=d=3,
所以an=3n.
易知b1=64,
當n≥2時 ,又
,
兩式相除得 , b1=64滿足上式,所以
.
(Ⅱ) ,
,
,
因此 .
【解析】(I)利用等差數列的通項公式可得an , 利用遞推關系可得bn . (II)cn=log2bn=6n, =
=
,利用“裂項求和”方法即可得出.
【考點精析】認真審題,首先需要了解數列的前n項和(數列{an}的前n項和sn與通項an的關系),還要掌握數列的通項公式(如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】在矩陣A的變換下,坐標平面上的點的橫坐標伸長到原來的3倍,縱坐標不變.
(1)求矩陣A及A﹣1;
(2)求圓x2+y2=4在矩陣A﹣1的變換下得到的曲線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+2|﹣2|x﹣1|. (Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對任意x∈[a,+∞),都有f(x)≤x﹣a成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等比數列,a1=1,a4=27; Sn為等差數列{bn} 的前n 項和,b1=3,S5=35.
(1)求{an}和{bn} 的通項公式;
(2)設數列{cn} 滿足cn=anbn(n∈N*),求數列{cn} 的前n 項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的莖葉圖(圖一)為高三某班50名學生的化學考試成績,圖(二)的算法框圖中輸入的ai為莖葉圖中的學生成績,則輸出的m,n分別是( )
A.m=38,n=12
B.m=26,n=12
C.m=12,n=12
D.m=24,n=10
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com