精英家教網 > 高中數學 > 題目詳情
已知△ABC滿足|
AB
|=|
AC
|=|
AB
-
AC
|
,則∠ABC=
 
分析:由向量的減法運算得到
AB
-
AC
=
CB
,即|
AB
-
AC
|=|
CB
|
,∴|
AB
|=|
AC
|=|
AB
-
AC
|
=|
CB
|
,從而得到三角形ABC為正三角形,答案可求.
解答:解:如圖:
精英家教網
AB
-
AC
=
CB
,得
|
AB
-
AC
|=|
CB
|
,
|
AB
|=|
AC
|=|
AB
-
AC
|
=|
CB
|

∴△ABC為正三角形,
∴∠ABC=60°.
故答案為:60°.
點評:本題考查了向量的加減法運算,考查了向量模的求法,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•普陀區一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

科目:高中數學 來源:上海市普陀區2012屆高三上學期期末質量抽測數學理科試題 題型:022

給出問題:已知△ABC滿足a·cosA=b·cosB,試判斷△ABC的形狀,某學生的解答如下:

故△ABC事直角三角形.

(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于

故△ABC是等腰三角形.

綜上可知,△ABC是等腰直角三角形.

請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果________.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•數學公式?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果________.

查看答案和解析>>

科目:高中數學 來源:2012年上海市普陀區高考數學一模試卷(文科)(解析版) 題型:解答題

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果   

查看答案和解析>>

科目:高中數學 來源:2012年上海市普陀區高考數學一模試卷(理科)(解析版) 題型:解答題

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果   

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视