已知橢圓=1(a>b>0)的離心率為
,短軸的一個端點為M(0,1),直線l:y=kx-
與橢圓相交于不同的兩點A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點M.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知點和
,圓
是以
為圓心,半徑為
的圓,點
是圓
上任意一點,線段
的垂直平分線
和半徑
所在的直線交于點
.
(1)當點在圓上運動時,求點
的軌跡方程
;
(2)已知,
是曲線
上的兩點,若曲線
上存在點
,滿足
(
為坐標原點),求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線.
(1)若圓心在拋物線上的動圓,大小隨位置而變化,但總是與直線
相切,求所有的圓都經過的定點坐標;
(2)拋物線的焦點為
,若過
點的直線與拋物線相交于
兩點,若
,求直線
的斜率;
(3)若過正半軸上
點的直線與該拋物線交于
兩點,
為拋物線上異于
的任意一點,記
連線的斜率為
試求滿足
成等差數列的充要條件.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,拋物線C的頂點在原點,焦點F的坐標為(1,0).
(1)求拋物線C的標準方程;
(2)設M、N是拋物線C的準線上的兩個動點,且它們的縱坐標之積為-4,直線MO、NO與拋物線的交點分別為點A、B,求證:動直線AB恒過一個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,過拋物線C:y2=4x上一點P(1,-2)作傾斜角互補的兩條直線,分別與拋物線交于點A(x,y1),B(x2,y2).
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的兩焦點在
軸上, 且兩焦點與短軸的一個頂點的連線構成斜邊長為2的等腰直角三角形
(1)求橢圓的方程;
(2)過點的動直線
交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q?若存在求出點Q的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設定圓,動圓
過點
且與圓
相切,記動圓
圓心
的軌跡為
.
(1)求軌跡的方程;
(2)已知,過定點
的動直線
交軌跡
于
、
兩點,
的外心為
.若直線
的斜率為
,直線
的斜率為
,求證:
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com