【題目】在國家批復成立江北新區后,南京市政府規劃在新區內的一條形地塊上新建一個全民健身中心,規劃區域為四邊形ABCD,如圖,
,點B在線段OA上,點C、D分別在射線OP與AQ上,且A和C關于BD對稱.已知
.
(1)若,求BD的長;
(2)問點C在何處時,規劃區域的面積最小?最小值是多少?
科目:高中數學 來源: 題型:
【題目】菱形中,
平面
,
,
,
(1)證明:直線平面
;
(2)求二面角的正弦值;
(3)線段上是否存在點
使得直線
與平面
所成角的正弦值為
?若存在,求
;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐中,
與
均為等腰直角三角形,且
,
,
為
上一點,且
平面
.
(1)求證:;
(2)過作一平面分別交
,
,
于
,
,
,若四邊形
為平行四邊形,求多面體
的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A、B兩地相距100公里,兩地政府為提升城市的抗疫能力,決定在A、B之間選址P點建造儲備倉庫,共享民生物資,當點P在線段AB的中點C時,建造費用為2000萬元,若點P在線段AC上(不含點A),則建造費用與P、A之間的距離成反比,若點P在線段CB上(不含點B),則建造費用與P、B之間的距離成反比,現假設P、A之間的距離為x千米,A地所需該物資每年的運輸費用為
萬元,B地所需該物資每年的運輸費用為
萬元,
表示建造倉庫費用,
表示兩地物資每年的運輸總費用(單位:萬元).
(1)求函數的解析式;
(2)若規劃倉庫使用的年限為,
,求
的最小值,并解釋其實際意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線:
的離心率
,其左焦點
到此雙曲線漸近線的距離為
.
(1)求雙曲線的方程;
(2)若過點的直線
交雙曲線
于
兩點,且以
為直徑的圓
過原點
,求圓
的圓心到拋物線
的準線的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為提高生產效率,需引進一條新的生產線投入生產,現有兩條生產線可供選擇,生產線①:有A,B兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.02,0.03.若兩道工序都沒有出現故障,則生產成本為15萬元;若A工序出現故障,則生產成本增加2萬元;若B工序出現故障,則生產成本增加3萬元;若A,B兩道工序都出現故障,則生產成本增加5萬元.生產線②:有a,b兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.04,0.01.若兩道工序都沒有出現故障,則生產成本為14萬元;若a工序出現故障,則生產成本增加8萬元;若b工序出現故障,則生產成本增加5萬元;若a,b兩道工序都出現故障,則生產成本增加13萬元.
(1)若選擇生產線①,求生產成本恰好為18萬元的概率;
(2)為最大限度節約生產成本,你會給工廠建議選擇哪條生產線?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某外賣平臺為提高外賣配送效率,針對外賣配送業務提出了兩種新的配送方案,為比較兩種配送方案的效率,共選取50名外賣騎手,并將他們隨機分成兩組,每組25人,第一組騎手用甲配送方案,第二組騎手用乙配送方案.根據騎手在相同時間內完成配送訂單的數量(單位:單)繪制了如下莖葉圖:
(1)根據莖葉圖,求各組內25位騎手完成訂單數的中位數,已知用甲配送方案的25位騎手完成訂單數的平均數為52,結合中位數與平均數判斷哪種配送方案的效率更高,并說明理由;
(2)設所有50名騎手在相同時間內完成訂單數的平均數,將完成訂單數超過
記為“優秀”,不超過
記為“一般”,然后將騎手的對應人數填入下面列聯表;
優秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根據(2)中的列聯表,判斷能否有的把握認為兩種配送方案的效率有差異.
附:,其中
.
0.05 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com