精英家教網 > 高中數學 > 題目詳情

【題目】已知,設函數.

(1)當時,求的極值點;

(2)討論在區間上的單調性;

(3)對任意恒成立時, 的最大值為1,求的取值范圍.

【答案】(1)的極小值點,無極大值點;(2)見解析;(3).

【解析】試題分析】(1)先求導數,再解方程求導函數的零點;(2)運用導數與函數的單調性之間的關系分析探求;(3)先將不等式進行等價轉化,再分離參數,構造函數運用導數知識求解

(1)當時, ,∴,令,則,當時, ;當時, ,所以的極小值點,無極大值點.

(2)

①當時, , 上單調遞增;在上單調遞減,

②當時, 上單調遞增.

③當時, , 上單調遞增;在上單調遞減

④當時, 上單調遞增,在上單調遞減.

(3)∵, 。由

對任意恒成立,即

對任意恒成立.

, ,根據題意,可以知道的最大值為1,則 恒成立.

由于,則.

時, ,令,則,令,得,則上單調遞減,在上單調遞增,則,∴上單調遞增.

從而,滿足條件,故的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】關于函數f(x)=4sin(2x+ )(x∈R),有下列命題:
①y=f(x)的表達式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數;
③y=f(x)的圖象關于點 對稱;
④y=f(x)的圖象關于直線x=﹣ 對稱.
其中正確的命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2+bx+c.
(1)若f(﹣1)=0,f(0)=0,求出函數f(x)的零點;
(2)若f(x)同時滿足下列條件:①當x=﹣1時,函數f(x)有最小值0,②f(1)=1求函數f(x)的解析式;
(3)若f(1)≠f(3),證明方程f(x)= [f(1)+f(3)]必有一個實數根屬于區間(1,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分13分)

已知橢圓的短軸長為,且與拋物線有共同的焦點,橢圓的左頂點為A,右頂點為,點是橢圓上位于軸上方的動點,直線,與直線分別交于兩點.

I)求橢圓的方程;

)求線段的長度的最小值;

)在線段的長度取得最小值時,橢圓上是否存在一點,使得的面積為,若存在求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從開始計數的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數據顯示, 之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式.
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某超市從現有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個數據(數據均在區間內)中,按照5%的比例進行分層抽樣,統計結果按, , , , 分組,整理如下圖:

(Ⅰ)寫出頻率分布直方圖(圖乙)中的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷售量的方差分別為 ,試比較的大。ㄖ恍鑼懗鼋Y論);

(Ⅱ)從甲種酸奶日銷售量在區間的數據樣本中抽取3個,記在內的數據個數為,求的分布列;

(Ⅲ)估計1200個日銷售量數據中,數據在區間中的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且 , 、分別為的中點.

)證明: 平面

)證明:平面平面

)當上的動點滿足什么條件時,使三棱錐的體積與四棱錐體積的比值為,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著人們對環境關注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽市建立了公共自行車服務系統,市民憑本人二代身份證到自行車服務中心辦理誠信借車卡借車,初次辦卡時卡內預先贈送20積分,當積分為0時,借車卡將自動鎖定,限制借車,用戶應持卡到公共自行車服務中心以1元購1個積分的形式再次激活該卡,為了鼓勵市民租用公共自行車出行,同時督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時間進行扣分收費,具體扣分標準如下:

①租用時間不超過1小時,免費;

②租用時間為1小時以上且不超過2小時,扣1分;

③租用時間為2小時以上且不超過3小時,扣2分;

④租用時間超過3小時,按每小時扣2分收費(不足1小時的部分按1小時計算).

甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.4和0.3.

(1)求甲、乙兩人所扣積分相同的概率;

(2)設甲、乙兩人所扣積分之和為隨機變量,求的分布列和數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视