精英家教網 > 高中數學 > 題目詳情

【題目】為調查某地區老年人是否需要志愿者提供幫助,從該地區調查了500位老人,結果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

(1)估計該地區老年人中,需要志愿提供幫助的老年人的比例;

(2)能否有99℅的把握認為該地區的老年人是否需要志愿者提供幫助與性別有關?提供幫助的老年人的比例?說明理由.

0.050

0.010

0.001

3.841

6.635

10.828

附:

【答案】(1);(2)見解析.

【解析】

(1)利用古典概型概率公式估計該地區老年人中,需要志愿提供幫助的老年人的比例.(2)先求出,再利用臨界值表判斷有99%的把握認為該地區的老年人是否需要幫助與性別有關.

(1)調查的500位老年人中有70位需要志愿者提供幫助,因此該地區老年人中,需要幫助的老年人的比例的估計值為

(2)

由于所以有99%的把握認為該地區的老年人是否需要幫助與性別有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響.已知某學生選修甲而不選修乙和丙的概率為0.08,選修甲和乙而不選修丙的概率是0.12,至少選修一門的概率是0.88,用ξ表示該學生選修的課程門數和沒有選修的課程門數的乘積.
(1)記“函數f(x)=x2+ξx為R上的偶函數”為事件A,求事件A的概率;
(2)求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本小題共l2分

如圖,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1PA1C1,連接AP交棱CC1D

(Ⅰ)求證:PB1∥平面BDA1;

(Ⅱ)求二面角AA1DB的平面角的余弦值;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2﹣lnx(a∈R)
(1)當a=1時,求函數y=f(x)的單調區間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex1f(x)≥x.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數f(x)的單調增區間;
(2)將函數f(x)的圖象向左平移 個單位長度,再向上平移1個單位長度,得到函數y=g(x)的圖象,求函數y=g(x)在 上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2﹣lnx(a∈R)
(1)當a=1時,求函數y=f(x)的單調區間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex1f(x)≥x.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高考復習經過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓練次數與答題正確率﹪的關系,對某校高三某班學生進行了關注統計,得到如下數據:

1

2

3

4

20

30

50

60

(1)求關于的線性回歸方程,并預測答題正確率是100﹪的強化訓練次數;

(2)若用表示統計數據的“強化均值”(精確到整數),若“強化均值”的標準差在區間內,則強化訓練有效,請問這個班的強化訓練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

樣本數據的標準差為:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學準備在開學時舉行一次大學一年級學生座談會,擬邀請20名來自本校機械工程學院、海洋學院、醫學院、經濟學院的學生參加,各學院邀請的學生數如下表所示:

學院

機械工程學院

海洋學院

醫學院

經濟學院

人數

4

6

4

6

(Ⅰ)從這20名學生中隨機選出3名學生發言,求這3名學生中任意兩個均不屬于同一學院的概率;
(Ⅱ)從這20名學生中隨機選出3名學生發言,設來自醫學院的學生數為ξ,求隨機變量ξ的概率分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)在R上存在導數f′(x),對任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)時,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,則實數a的取值范圍為(
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视