【題目】在圓上任取一點
,過點
作
軸的垂線段
,
為垂足.
,當點
在圓上運動時,
(1)求點的軌跡
的方程;
(2) 若,直線
交曲線
于
、
兩點(點
、
與點
不重合),且滿足
.
為坐標原點,點
滿足
,證明直線
過定點,并求直線
的斜率的取值范圍.
科目:高中數學 來源: 題型:
【題目】為了增強消防安全意識,某中學對全體學生做了一次消防知識講座,從男生中隨機抽取50人,從女生中隨機抽取70人參加消防知識測試,統計數據得到如下列聯表:
優秀 | 非優秀 | 總計 | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
總計 | 45 | 75 | 120 |
(Ⅰ)試判斷是否有的把握認為消防知識的測試成績優秀與否與性別有關;
附:
K2=
(Ⅱ)為了宣傳消防安全知識,從該校測試成績獲得優秀的同學中采用分層抽樣的方法,隨機選出6名組成宣傳小組,現從這6人中隨機抽取2名到校外宣傳,求到校外宣傳的同學中至少有1名是男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(ax+ )+
.
(1)若a>0,且f(x)在(0,+∞)上單調遞增,求實數a的取值范圍;
(2)是否存在實數a,使得函數f(x)在(0,+∞)上的最小值為1?若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,
,函數
的最小值為
(1)當時,求
的值;
(2)求;
(3)已知函數為定義在R上的增函數,且對任意的
都滿足
問:是否存在這樣的實數m,使不等式
+
對所有
恒成立,若存在,求出m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面給出一個問題的算法:
S1 輸入x;
S2 若x≤2,則執行S3;否則,執行S4;
S3 輸出-2x-1;
S4 輸出x2-6x+3.
問題:
(1)這個算法解決的是什么問題?
(2)當輸入的x值為多大時,輸出的數值最小?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,左頂點為
(1)求橢圓的方程;
(2)過點作兩條相互垂直的直線分別與橢圓
交于(不同于點
的)
兩點.試判斷直線
與
軸的交點是否為定點,若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為
,
為
的中點,
為線段
上的動點,過點
,
,
的平面截該正方體所得的截面為
,則下列命題正確的是__________(寫出所有正確命題的編號).
①當時,
為四邊形;②當
時,
為等腰梯形;
③當時,
與
的交點
滿足
;
④當時,
為五邊形;
⑤當時,
的面積為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為ρ=2 sin(
),直線C的極坐標方程為ρsinθ=1,射線θ=φ,θ=
+φ(φ∈[0,π])與曲線C1分別交異于極點O的兩點A,B.
(I)把曲線C1和C2化成直角坐標方程,并求直線C2被曲線C1截得的弦長;
(II)求|OA|2+|OB|2的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017湖北部分重點中學高三聯考)從編號為001,002,…,500的500個產品中用系統抽樣的方法抽取一個樣本,已知樣本編號從小到大依次為007,032,…,則樣本中最大的編號應該為( )
A. 483 B. 482
C. 481 D. 480
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com