已知=2,點(
)在函數
的圖像上,其中
=
.
(1)設,求
及數列{
}的通項公式;
(2)記,求數列{
}的前n項和
,并求
.
【解析】本試題主要考查了數列的通項公式和數列求和的運用。注意構造等比數列的思想的運用。并能運用裂項求和。
科目:高中數學 來源: 題型:
3 |
4 |
3 |
2 |
A、1 | B、-1 | C、2 | D、-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
2 | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
已知函數,
(1)若函數在[l,+∞]上是增函數,求實數
的取值范圍。
(2)若=一
是
的極值點,求
在[l,
]上的最大值:
(3)在(2)的條件下,是否存在實數b,使得函數g()=b
的圖像與函
的圖像恰有3個交點,若存在,求出實數b的取值范圍:若不存在,試說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com