精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示的多面體是由一個直平行六面體被平面所截后得到的,其中,.

1)求證:平面平面

2)求直線與平面所成角的正弦值.

【答案】(1)見解析(2)

【解析】

(1)在中,由余弦定理可得,則可得,在直平行六面體中,平面,則可得,由此說明平面,即可證明平面平面;

2)以為原點建立空間直角坐標系,表示出各點的坐標,求出平面的法向量,由直線與平面所成角正弦值的公式即可得到直線與平面所成角的正弦值。

1)證明:在中,因為,.

由余弦定理得,,

解得

,

在直平行六面體中,平面平面,

平面,

∴平面平面.

2)解:如圖以為原點建立空間直角坐標系,

因為,,

所以,,,,

,.

設平面的法向量,

,得,,

.

設直線和平面的夾角為,

所以,

所以直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】是拋物線上的一點,拋物線在點處的切線方程為.

(1)求的方程;

(2)已知過點的兩條不重合直線的斜率之積為,且直線分別交拋物線,兩點和,兩點.是否存在常數使得成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,討論的單調性;

(2)證明:當時,只有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形中,,為邊的中點,沿折起,點折至處(平面),若為線段的中點,則在折起過程中,下列說法錯誤的是(

A.始終有平面

B.不存在某個位置,使得

C.在某個球面上運動

D.一定存在某個位置,使得異面直線所成角為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若,試判斷的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯招對初三畢業學生進行體育測試,是激發學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業生升學體育考試規定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規定計分規則如下表:

每分鐘跳繩個數

得分

17

18

19

20

(Ⅰ)現從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;

(Ⅱ)若該校初三年級所有學生的跳繩個數服從正態分布,用樣本數據的平均值和方差估計總體的期望和方差,已知樣本方差(各組數據用中點值代替).根據往年經驗,該校初三年級學生經過一年的訓練,正式測試時每人每分鐘跳繩個數都有明顯進步,假設今年正式測試時每人每分鐘跳繩個數比初三上學期開始時個數增加10個,現利用所得正態分布模型:

預計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數;(結果四舍五入到整數)

若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數為ξ,求隨機變量的分布列和期望.

附:若隨機變量服從正態分布,則,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于AB的點,PO垂直于圓O所在的平面,且.D為線段AC的中點.

(1)求證:平面平面

(2)若點E在線段PB上,且,求三棱錐體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC的內角A,B,C的對邊分別為ab,c,且(b+ctanC=﹣ctanA

1)求A;

2)若b,c2,點DBC邊上,且ADBD,求AD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是空氣質量的一個重要指標,我國標準采用世衛組織設定的最寬限值,即日均值在以下空氣質量為一級,在之間空氣質量為二級,在以上空氣質量為超標.如圖是某地日到日均值(單位:)的統計數據,則下列敘述不正確的是(

A.日到日,日均值逐漸降低

B.天的日均值的中位數是

C.天中日均值的平均數是

D.從這天的日均監測數據中隨機抽出一天的數據,空氣質量為一級的概率是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视