精英家教網 > 高中數學 > 題目詳情

12分)設,在由直線及坐標軸所圍成的區域內任意

投一質點M,點M落在由曲線所圍成的區域內概率為,求

a值。

 

【答案】

解:由題可知

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題滿分12分)

有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數據:


其中直徑在區間[1.48,1.52]內的零件為一等品。

(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機抽取2個.

     (ⅰ)用零件的編號列出所有可能的抽取結果;

     (ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>

科目:高中數學 來源: 題型:

零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

(Ⅲ)求二面角B-EF-A的正切值。

查看答案和解析>>

科目:高中數學 來源: 題型:

零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

(Ⅲ)求二面角B-EF-A的正切值。

查看答案和解析>>

科目:高中數學 來源:2011-2012學年青海省片區高三年級大聯考理科數學試卷(解析版) 題型:解答題

(本小題滿分12分)

已知橢圓上任一點P,由點P向x軸作垂線段PQ,垂足為Q,點M在PQ上,且,點M的軌跡為C.

(Ⅰ)求曲線C的方程;

(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于軸的直線上一動點,滿足(O為原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视