【題目】把函數 的圖象上每個點的橫坐標擴大到原來的4倍,再向左平移
,得到函數g(x)的圖象,則函數g(x)的一個單調遞減區間為( )
A.
B.
C.
D.
【答案】B
【解析】解:把函數 的圖象上每個點的橫坐標擴大到原來的4倍,可得y=
sin(
x﹣
)的圖象, 再向左平移
,得到函數g(x)=
sin[
(x+
)﹣
]=
sin(
x﹣
)的圖象,
令2kπ+ ≤
x﹣
≤2kπ+
,求得4kπ+
≤x≤4kπ+
,
故函數g(x)的單調遞減區間為[4kπ+ ,4kπ+
],k∈Z,
令k=0,可得函數g(x)的一個單調遞減區間為[ ,
],
故選:B.
【考點精析】掌握函數y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點向左(右)平移個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象.
科目:高中數學 來源: 題型:
【題目】已知a>0,b>0,函數f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實數t的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】計劃在某水庫建一座至多安裝 臺發電機的水電站,過去
年的水文資料顯示,水庫年入流量
(年入流量:一年內上游來水與庫區降水之和.單位:億立方米)都在40以上,不足
的年份有
年,不低于
且不超過
的年份有
年,超過
的年份有
年,將年入流量在以上三段的頻率作為相應段的概率,假設各年的年入流量相互獨立.
(1)求未來 年中,設
表示流量超過
的年數,求
的分布列及期望;
(2)水電站希望安裝的發電機盡可能運行,但每年發電機最多可運行臺數受年入流量 限制,并有如下關系:
年入流量 | |||
發電機最多可運行臺數 | 1 |
若某臺發電機運行,則該臺年利潤為 萬元,若某臺發電機未運行,則該臺年虧損
萬元,欲使水電站年總利潤的均值達到最大,應安裝發電機多少臺?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2).
(1)求λ的值及數列{an}的通項公式;
(2)設 ,且數列{bn}的前n項和為Sn , 求S2n .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關,現對30名青少年進行調查,得到如下列聯表:
常喝 | 不常喝 | 總計 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
總計 | 30 |
已知從這30名青少年中隨機抽取1名,抽到肥胖青少年的概率為 .
(1)請將列聯表補充完整;
(2)是否有99.5%的把握認為青少年的肥胖與常喝碳酸飲料有關?
獨立性檢驗臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中n=a+b+c+d .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xe2x﹣lnx﹣ax.
(1)當a=0時,求函數f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥
e
+
恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com