【題目】已知f(x)=lnx+a(1-x),問:(1)討論f(x) 的單調性;(2)當 f(x)有最大值,且最大值大于2a-2 時,求a的取值范圍.
(1)(I)討論f(x) 的單調性;
(2)(II)當 f(x)有最大值,且最大值大于2a-2 時,求a的取值范圍.
【答案】
(1)
f(x)在(0,)單調遞增,在(
,+
)單調遞減
(2)
(0,1)
【解析】
(I)a0,f(x)在(0,+
)是單調遞增
a0.f(x)在(0,
)單調遞增,在(
, +
)單調遞減
f(x)的定義域為(0,+),f’(x)=
-a,若a
0,則f’(x)
0,f(x)在(0,+
)是單調遞增
若a0,則當x
(0,
)時,f’(x)
0,
當x(
, +
)時,f’(x)
0
所以f(x)在(0,)單調遞增,在(
, +
)單調遞減。
(II).由(I)知,當a0時,f(x)在(0,+
)無大值
當a0.f(x)在x=
取得最大值,最大值為f(
)=ln(
)+a(1-
)=-lna+a-1
因此f()
2a-2
lna+a-1
0
令g(a)=lna+a-1,則g(a)在(0,+)是增函數,g(1)=0,于是,當0
a
1時g(a)
0,當a
1時,g(a)
0,因此a的取值范圍是(0,1)。
【考點精析】通過靈活運用函數單調性的判斷方法,掌握單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較即可以解答此題.
科目:高中數學 來源: 題型:
【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴.某汽車經銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統計分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經銷商每銷售此品牌汽車1倆所獲得的利潤分別是1萬元,2萬元,3萬元.現甲乙兩人從該汽車經銷商處,采用上述分期付款方式各購買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經銷商從甲乙兩人購車中所獲得的利潤,求X的分布列與期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
+
=1,(a
b
0)的離心率為
,點(2,
)在C上
(1)求C的方程;
(2)直線l不經過原點O,且不平行于坐標軸,l與C有兩個交點A,B,線段AB中點為M,證明:直線OM的斜率與直線l的斜率乘積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015全國統考II)設函數f(x)=ln(1+|x|)-
,則使得f(x)
f(2x-1)成立的x的取值范圍是()
A.(,1)
B.(-,
)
(1,+
)
C.(-,
)
D.(-,-
)
(
,+
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
(2015·新課標Ⅱ)設函數f‘(x)是奇函數f(x)(xR)的導函數,f(-1)=0,當x
0時,xf'(x)-f(x)
0,則使得f(x)
0成立的x的取值范圍是()
A.(-,-1)
(0,1)
B.(-1,0)(1,+
)
C.(-,-1)
(-1,0)
D.(0,1)(1,+
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅行社組織一批游客外出旅游,原計劃租用45座客車若干輛,但有15人沒有座位;若租用同樣數量的60座客車,則多出一輛車,且其余客車恰好坐滿,已知45座客車租金為每輛220元,60座客車租金為每輛300元,問:
(1)這批游客的人數是多少?原計劃租用多少輛45座客車?
(2)若租用同一種車,要使每位游客都有座位,應該怎樣租用才合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖南)某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎,求下列問題:(1)求顧客抽獎1次能獲獎的概率(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為 X ,求 X 的分布列和數學期望.
(1)(1)求顧客抽獎1次能獲獎的概率
(2)(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為 , 求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·江蘇)如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1 , 設AB1的中點為D,B1CBC1=E.求證:
(1)DE∥平面AA1C1C
(2)BC1⊥AB1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com