精英家教網 > 高中數學 > 題目詳情
設函數在區間的導函數,在區間的導函數,若在區間上的恒成立,則稱函數在區間上為“凸函數”,已知,若當實數滿足時,函數在區間上為“凸函數”,則的最大值為(  )
A.B.C.D.
B
當|m|≤2時,f″(x)=x2-mx-3<0恒成立?當|m|≤2時,mx>x2-3恒成立.(8分)
當x=0時,f″(x)=-3<0顯然成立.(9分)
當x>0,  <m
∵m的最小值是-2.
 <-2.
從而解得0<x<1(11分)
當x<0, >m
∵m的最大值是2,∴ >2,
從而解得-1<x<0.(13分)
綜上可得-1<x<1,從而(b-a)max=1-(-1)=2
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

在曲線上切線傾斜角為的點是(  )
A.(0,0)B.(2,4)C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題共10分)
已知函數,當時,有極大值。
(Ⅰ)求的值;
(Ⅱ)求函數的極小值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題12分)設函數
(1)求函數的單調區間;
(2)求上的最小值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數處導數的幾何意義是(    )
A.在點處的斜率;
B.在點 ( x0,f ( x0 ) ) 處的切線與軸所夾的銳角正切值;
C.點 ( x0f ( x0 ) ) 與點 (0 , 0 ) 連線的斜率;
D.曲線在點 ( x0,f ( x0 ) ) 處的切線的斜率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
設函數,曲線在點處的切線方程為.
(1)求的解析式;(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

曲線的切線中,斜率最小的的切線方程為           

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數,
(1)求為何值時,上取得最大值;
(2)設,若是單調遞增函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點為曲線的公共點,且兩條曲線在點處的切線重合,則=      .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视