【題目】
已知橢圓兩個焦點的坐標分別是
,
,并且經過點
.
(1)求橢圓的標準方程;
(2) 已知是橢圓
的左頂點,斜率為
的直線交橢圓
于
,
兩點,
點在
上,
,
,證明:
.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調區間;
(2)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設a>0,函數g(x)=|f(x)|,求證:g(x)在區間[﹣1,1]上的最大值不小于 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為了對新研發的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程=bx+a;(其中
,
,
,
,
);
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
,一動直線l過
與圓
相交于
.兩點,
是
中點,l與直線m:
相交于
.
(1)求證:當l與m垂直時,l必過圓心;
(2)當時,求直線l的方程;
(3)探索是否與直線l的傾斜角有關,若無關,請求出其值;若有關,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線y2=4x焦點F的直線l交拋物線于A、B兩點(點A在第一象限),若 =3
,則直線l的方程為( )
A.x﹣2y﹣1=0
B.2x﹣y﹣2=0
C.x﹣ y﹣1=0
D. x﹣y﹣
=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(x﹣1)+ (a∈R).
(1)若函數f(x)在區間(1,4)上單調遞增,求a的取值范圍;
(2)若函數y=f(x)的圖象與直線4x﹣3y﹣2=0相切,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=.
(Ⅰ)求函數f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數單調性定義證明:f(x)在(1,+∞)上是增函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】佳木斯一中從高二年級甲、乙兩個班中各選出7名學生參加2017年全國高中數學聯賽(黑龍江初賽),他們取得的成績(滿分140分)的莖葉圖如圖所示,其中甲班學生成績的中位數是81,乙班學生成績的平均數是86,若正實數、
滿足
,
,
成等差數列且
,
,
成等比數列,則
的最小值為( )
A. B. 2 C.
D. 8
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線l與圓C交于A、B兩點.
(1)若|AB|=,求直線l的傾斜角;
(2)若點P(1,1)滿足2=
,求此時直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com