精英家教網 > 高中數學 > 題目詳情
已知點(4,2)是直線l被橢圓
x2
36
+
y2
9
=1
所截得的線段的中點,則直線l的斜率是______.
因為點(4,2)是直線l被橢圓
x2
36
+
y2
9
=1
所截得的線段的中點,
設l與橢圓的交點為A(x1,y1),B(x2,y2),
則有
x12
36
+
y12
9
=1
x22
36
+
y22
9
=1

兩式相減,得kAB=
y1-y2
x1-x2
=--
9(x1+x2)
36(y1+y2)
=-
1
2

直線l的斜率是-
1
2

故答案為:-
1
2
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

已知橢圓的標準方程
x2
8
+
y2
9
=1,則橢圓的焦點坐標為______,離心率為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓
x2
4
+
y2
3
=1
,能否在y軸左側的橢圓上找到一點M,使點M到左準線l的距離|MN|為點M到兩焦點的距離的等差中項?若M存在,求出它的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩焦點分別為F1、F2,以F1、F2為邊作等邊三角形,若橢圓恰好平分三角形的另兩邊,則橢圓的離心率為(  )
A.4(2-
3
)
B.
3
-1
C.
1
2
(
3
+1)
D.
1
4
(
3
+2)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓的中心在原點,坐標軸為對稱軸,焦點在x軸上,一個焦點與短軸兩端點的連線互相垂直,且此焦點與長軸上較近的端點距離為4(
2
-1)
,
(1)求此橢圓方程,并求出準線方程;
(2)若P在左準線l上運動,求tan∠F1PF2的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓x2+8y2=1的焦點坐標是( 。
A.(0,±
2
4
)
B.
14
4
,0)
C.(0,±
7
)
D.(±1,0)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點P是橢圓
x2
36
+
y2
24
=1(x≠0,y≠0)
上的動點,F1,F2為橢圓的兩個焦點,O是坐標原點,若M是∠F1PF2的角平分線上一點,且
F1M
MP
=0
,則|OM|的取值范圍是( 。
A.(0,2
3
]
B.(0,2
3
)
C.[2
3
,3
D.[0,4]

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知過橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的焦點F(-1,0)的弦AB的中點M的坐標是(-
2
3
,
1
3
),則橢圓E的方程是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓
x2
m2
+
y2
3-m
=1
的一個焦點為(0,1),則m的值為( 。
A.1B.
-1±
17
2
C.-2或1D.以上均不對

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视