精英家教網 > 高中數學 > 題目詳情

(05年江西卷)(12分)

如圖,在長方體ABCD―A1B1C1D1,中,AD=AA1=1,AB=2,點E在棱AB上移動.

   (1)證明:D1E⊥A1D;

   (2)當E為AB的中點時,求點E到面ACD1的距離;

   (3)AE等于何值時,二面角D1―EC―D的大小為.

解析:解法(一)

(1)證明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E

(2)設點E到面ACD1的距離為h,在△ACD1中,AC=CD1=,AD1=

(3)過D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,

  ∴∠DHD1為二面角D1―EC―D的平面角.

設AE=x,則BE=2-x

解法(二):以D為坐標原點,直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標系,設AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因為E為AB的中點,則E(1,1,0),從而,

,設平面ACD1的法向量為,則

也即,得,從而,所以點E到平面AD1C的距離為

(3)設平面D1EC的法向量

,∴

  令b=1, ∴c=2,a=2-x,

依題意

(不合,舍去), .

∴AE=時,二面角D1―EC―D的大小為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.

(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;

(2)設通過最后三關后,能被錄取的人數為,求隨機變量的期望

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年江蘇百校樣本分析)(10分)(矩陣與變換)  給定矩陣  A=, =

(1)求A的特征值、及對應的特征向量;  

(2)求

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年莆田四中一模理) (14分)

由函數確定數列,,若函數的反函數 能確定數列,,則稱數列是數列的“反數列”。

(1)若函數確定數列的反數列為,求的通項公式;

(2)對(1)中,不等式對任意的正整數恒成立,求實數的范圍;

(3)設,若數列的反數列為,的公共項組成的數列為;求數列項和

 

查看答案和解析>>

科目:高中數學 來源: 題型:

查看答案和解析>>

科目:高中數學 來源: 題型:

(05年湖北卷文)(12分)

設數列的前n項和為Sn=2n2,為等比數列,且

   (Ⅰ)求數列的通項公式;

   (Ⅱ)設,求數列的前n項和Tn.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视