曲線都是以原點O為對稱中心、坐標軸為對稱軸、離心率相等的橢圓.點M的坐標是(0,1),線段MN是曲線
的短軸,并且是曲線
的長軸 . 直線
與曲線
交于A,D兩點(A在D的左側),與曲線
交于B,C兩點(B在C的左側).
(1)當=
,
時,求橢圓
的方程;
(2)若,求
的值.
(1)C1 ,C2的方程分別為,
;(2)
.
解析試題分析:(1)解:設曲線C1的方程為,C2的方程為
(
)…2分
∵C1 ,C2的離心率相同,∴,∴
, 3分
令
代入曲線方程,則
.
當
=
時,A
,C
.……………5分
又∵,
.由
,且
,解得
6分
∴C1 ,C2的方程分別為,
. 7分
(2)令代入曲線方程,
,得
,得
9分
由于,所以
(-
,m),
(
,m) . 10分
由于是曲線
的短軸,所以
.
∵OC⊥AN,(
). 11分
∵=(
,m),
=(
,-1-m),
代入()并整理得2m2+m-1=0, 12分
∴或
(舍負) ,∴
. 14分
考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關系,平面向量的坐標運算。
點評:難題,求橢圓的標準方程,主要運用了橢圓的幾何性質,注意明確焦點軸和a,b,c的關系。曲線關系問題,往往通過聯立方程組,得到一元二次方程,運用韋達定理。本題(2)利用向量垂直,數量積為0,確定得到m的方程。
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,
分別為橢圓
的左、右焦點,若橢圓
的焦距為2.
⑴求橢圓的方程;
⑵設為橢圓上任意一點,以
為圓心,
為半徑作圓
,當圓
與橢圓的右準線
有公共點時,求△
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設是橢圓
的左焦點,直線
方程為
,直線
與
軸交于
點,
、
分別為橢圓的左右頂點,已知
,且
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率為
的直線交橢圓于
、
兩點,求三角形
面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.
(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2.
試問:是否存在直線AB,使得S1=S2?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率為
,右焦點到直線
的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線 與橢圓C交于A、B兩點,且線段AB中點恰好在直線
上,求△OAB的面積S的最大值.(其中O為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率等于
,點
在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設橢圓的左右頂點分別為
,
,過點
的動直線
與橢圓
相交于
,
兩點,是否存在定直線
:
,使得
與
的交點
總在直線
上?若存在,求出一個滿足條件的
值;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的頂點為
,焦點為
,
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設n 為過原點的直線,是與n垂直相交于P點,與橢圓相交于A, B兩點的直線,
.是否存在上述直線
使
成立?若存在,求出直線
的方程;并說出;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com