【題目】已知橢圓的一個焦點與上、下頂點構成直角三角形,以橢圓
的長軸長為直徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)設過橢圓右焦點且不平行于軸的動直線與橢圓
相交于
兩點,探究在
軸上是否存在定點
,使得
為定值?若存在,試求出定值和點
的坐標;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知圓,圓心為
,定點
,
為圓
上一點,線段
上一點
滿足
,直線
上一點
,滿足
.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)為坐標原點,
是以
為直徑的圓,直線
與
相切,并與軌跡
交于不同的兩點
.當
且滿足
時,求
面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業里工人的工資與其生產利潤滿足線性相關關系,現統計了100名工人的工資(元)與其生產利潤
(千元)的數據,建立了
關于
的回歸直線方程為
,則下列說法正確的是( )
A. 工人甲的生產利潤為1000元,則甲的工資為130元
B. 生產利潤提高1000元,則預計工資約提高80元
C. 生產利潤提高1000元,則預計工資約提高130元
D. 工人乙的工資為210元,則乙的生產利潤為2000元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:三棱錐中,側面
垂直底面,
是底面最長的邊;圖1是三棱錐
的三視圖,其中的側視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐
的直觀圖的一部分,其中點
在
平面內.
(Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐
的哪些面是直角三角形;
(Ⅱ)設二面角的大小為
,求
的值;
(Ⅲ)求點到面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
,
,
,若該三棱錐的四個頂點均在同一球面上,則該球的體積為( )
A. B.
C.
D.
【答案】D
【解析】在三棱錐中,因為
,
,
,所以
,則該幾何體的外接球即為以
為棱長的長方體的外接球,則
,其體積為
;故選D.
點睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進行聯系,常用補體法補成正方體或長方體進行處理,本題中由數量關系可證得
從而幾何體的外接球即為以
為棱長的長方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結束】
21
【題目】已知函數,則
的大致圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,
,
是
的中點,
是
與
的交點,將
沿
折起到
的位置,如圖2.
圖1 圖2
(1)證明: 平面
;
(2)若平面平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為1的正方體中,點
,
分別是側面
與底面
的中心,則下列命題中錯誤的個數為( )
①平面
; ②異面直線
與
所成角為
;
③與平面
垂直; ④
.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】對于①,∵DF,DF
平面
,
平面
,∴
平面
,正確;
對于②,∵DF,∴異面直線
與
所成角即異面直線
與
所成角,△
為等邊三角形,故異面直線
與
所成角為
,正確;
對于③,∵⊥
,
⊥CD,且
CD=D,∴
⊥平面
,即
⊥平面
正確;
對于④,,正確,
故選:A
【題型】單選題
【結束】
8
【題目】已知函數在區間
上單調遞增,則實數
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com