【題目】在疫情這一特殊時期,教育行政部門部署了“停課不停學”的行動,全力幫助學生在線學習.復課后進行了摸底考試,某校數學教師為了調查高三學生這次摸底考試的數學成績與在線學習數學時長之間的相關關系,對在校高三學生隨機抽取45名進行調查.知道其中有25人每天在線學習數學的時長是不超過1小時的,得到了如下的等高條形圖:
(1)是否有的把握認為“高三學生的這次摸底考試數學成績與其在線學習時長有關”;
(2)將頻率視為概率,從全校高三學生這次數學成績超過120分的學生中隨機抽取10人,求抽取的10人中每天在線學習時長超過1小時的人數的數學期望與方差.
科目:高中數學 來源: 題型:
【題目】2020年3月12日,國務院新聞辦公室發布會重點介紹了改革開放40年,特別是黨的十八大以來我國脫貧攻堅、精準扶貧取得的顯著成績,這些成績為全面脫貧初步建成小康社會奠定了堅實的基礎.下圖是統計局公布的2010年~2019年年底的貧困人口和貧困發生率統計表.則下面結論正確的是( )
(年底貧困人口的線性回歸方程為(其中
年份-2019),貧困發生率的線性回歸方程為
(其中
年份-2009))
A.2010年~2019年十年間脫貧人口逐年減少,貧困發生率逐年下降
B.2012年~2019年連續八年每年減貧超過1000萬,且2019年貧困發生率最低
C.2010年~2019年十年間超過1.65億人脫貧,其中2015年貧困發生率低于6%
D.根據圖中趨勢線可以預測,到2020年底我國將實現全面脫貧
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】法國數學家龐加是個喜歡吃面包的人,他每天都會購買一個面包,面包師聲稱自己出售的每個面包的平均質量是1000,上下浮動不超過50
.這句話用數學語言來表達就是:每個面包的質量服從期望為1000
,標準差為50
的正態分布.
(1)假設面包師的說法是真實的,從面包師出售的面包中任取兩個,記取出的兩個面包中質量大于1000的個數為
,求
的分布列和數學期望;
(2)作為一個善于思考的數學家,龐加萊每天都會將買來的面包稱重并記錄,25天后,得到數據如下表,經計算25個面包總質量為24468.龐加萊購買的25個面包質量的統計數據(單位:
)
981 | 972 | 966 | 992 | 1010 | 1008 | 954 | 952 | 969 | 978 |
989 | 1001 | 1006 | 957 | 952 | 969 | 981 | 984 | 952 | 959 |
987 | 1006 | 1000 | 977 | 966 |
盡管上述數據都落在上,但龐加菜還是認為面包師撒謊,根據所附信息,從概率角度說明理由
附:
①若,從X的取值中隨機抽取25個數據,記這25個數據的平均值為Y,則由統計學知識可知:隨機變量
②若,則
,
,
;
③通常把發生概率在0.05以下的事件稱為小概率事件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),以原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的方程為
,定點
,點
是曲線
上的動點,
為
的中點.
(1)求點的軌跡
的直角坐標方程;
(2)已知直線與
軸的交點為
,與曲線
的交點為
,若
的中點為
,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
的參數方程為
(t為參數).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)求的普通方程和曲線C的直角坐標方程;
(2)求曲線C上的點到距離的最大值及該點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過
個國家或地區宣布進人緊急狀態,部分國家或地區直接宣布“封國”或“封城”,隨著國外部分活動進入停擺,全球經濟缺乏活力,一些企業開始倒閉,下表為
年第一季度企業成立年限與倒閉分布情況統計表:
企業成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企業成立年限 | 1 | 2 | 3 | 4 | 5 |
倒閉企業數量(萬家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒閉企業所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根據上表,給出兩種回歸模型:
模型①:建立曲線型回歸模型,求得回歸方程為
;
模型②:建立線性回歸模型.
(1)根據所給的統計量,求模型②中關于
的回歸方程;
(2)根據下列表格中的數據,比較兩種模型的相關指數,并選擇擬合精度更高、更可靠的模型,預測
年成立的企業中倒閉企業所占比例(結果保留整數).
回歸模型 | 模型① | 模型② |
回歸方程 | ||
參考公式:,
;
.
參考數據:,
,
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,斜率為
的直線
交拋物線
于
,
兩點,當直線
過點
時,以
為直徑的圓與直線
相切.
(1)求拋物線的方程;
(2)與平行的直線
交拋物線于
,
兩點,若平行線
,
之間的距離為
,且
的面積是
面積的
倍(O為坐標原點),求
和
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com