【題目】已知橢圓C: (a>b>0)過點(
,1),且焦距為2
.
(1)求橢圓C的方程;
(2)若直線l:y=k(x+1)(k>﹣2)與橢圓C相交于不同的兩點A、B,線段AB的中點M到直線2x+y+t=0的距離為 ,求t(t>2)的取值范圍.
【答案】
(1)解:由2c=2 ,c=
,則a2﹣b2=2,
將點( ,1)代入橢圓方程:
,解得:a2=4,b2=2,
∴橢圓的標準方程:
(2)解:A(x1,y1),B(x2,y2),M(x0,y0)
,整理得:(2k2+1)x2+4k2x+2k2﹣4=0,
則x1+x2=﹣ ,則x0=
=﹣
,
y0=k(x0+1)= ,
由M到直線2x+y+t=0的距離 ,
=
,
則丨 +t﹣2丨=3,
由k>﹣2及t>2,則t=5﹣ =5﹣
,
由 ≥6
,
∴5﹣ ≤t<5,即4﹣
≤t<5,
∴t(t>2)的取值范圍[4﹣ ,5)
【解析】(1)由c= ,則a2﹣b2=2,將點代入橢圓方程,聯立即可求得a和b的值,即可求得橢圓方程;(2)將直線方程代入橢圓方程,利用韋達定理及中點坐標公式求得M點坐標,利用點到直線的距離公式,根據k及t的取值范圍,利用基本不等式的性質,即可求得t的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓C1的方程為 +
=1,雙曲線C2的左、右焦點分別是C1的左、右頂點,而以雙曲線C2的左、右頂點分別是橢圓C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C2相交于不同的兩點E、F,若△OEF的面積為2 ,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓方程為 +y2=1,圓C:(x﹣1)2+y2=r2 .
(Ⅰ)求橢圓上動點P與圓心C距離的最小值;
(Ⅱ)如圖,直線l與橢圓相交于A、B兩點,且與圓C相切于點M,若滿足M為線段AB中點的直線l有4條,求半徑r的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據微信同程旅游的調查統計顯示,參與網上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個年齡段的網上購票人數成等差數列,求a,b的值;
(2)為鼓勵大家網上購票,該平臺常采用購票就發放酒店入住代金券的方法進行促銷,具體做法如下:年齡在[30,50)歲的每人發放20元,其余年齡段的每人發放50元,先按發放代金券的金額采用分層抽樣的方式從參與調查的1000位網上購票者中抽取5人,并在這5人中隨機抽取3人進行回訪調查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= mcos2x+(m﹣2)sinx,其中1≤m≤2,若函數f(x)的最大值記為g(m),則g(m)的最小值為( )
A.﹣
B.1
C.3﹣
D. ﹣1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點E(﹣2,0),點P時圓F:(x﹣2)2+y2=36上任意一點,線段EP的垂直平分線交FP于點M,點M的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過F的直線交曲線C于不同的A、B兩點,交y軸于點N,已知 =m
,
=n
,求m+n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代內容極為豐富的數學名著,系統地總結了戰國、秦、漢時期的數學成就.書中將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為“陽馬”,若某“陽馬”的三視圖如圖所示(單位:cm),則該陽馬的外接球的體積為( )
A.100πcm3
B.
C.400πcm3
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用數學歸納法證明1+2+3+…+n2= ,則當n=k+1時左端應在n=k的基礎上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com