【題目】設a+b=2,b>0,則當a=時, 取得最小值.
科目:高中數學 來源: 題型:
【題目】已知向量=(4cos2(
-
),cosx+sinx),
=(sinx,cosx-sinx),設f(x)=
-1
(1)求滿足|f(x)|≤1的實數x的集合;
(2)若函數φ(x)=[f(2x)+tf(x)-tf(
-x)]-(1+
)在[-
,
]上的最大值為2,求實數t的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設F為拋物線C:y2=4x的焦點,過點P(﹣1,0)的直線l交拋物線C于兩點A,B,點Q為線段AB的中點,若|FQ|=2,則直線l的斜率等于 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當x∈[0,2]時,求|f(x)|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為 ,求線段AM的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)=a(a為常數).
(1)求a的值;
(2)若函數g(x)=|(2x+1)f(x)|﹣k有2個零點,求實數k的取值范圍;
(3)若x∈[﹣2,﹣1]時,不等式f(x)恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
.
(1)求cosA的值;
(2)若a=4 ,b=5,求向量
在
方向上的投影.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分形幾何學是一門以不規則幾何形態為研究對象的幾何學.分形的外表結構極為復雜,但其內部卻是有規律可尋的.一個數學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統.下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段
上取兩個點
,
,使得
,以
為一邊在線段
的上方做一個正六邊形,然后去掉線段
,得到圖2中的圖形;對圖2中的最上方的線段
作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個圖形(圖1為第1個圖形)中的所有線段長的和為
,現給出有關數列
的四個命題:
①數列是等比數列;
②數列是遞增數列;
③存在最小的正數,使得對任意的正整數
,都有
;
④存在最大的正數,使得對任意的正整數
,都有
.
其中真命題的序號是________________(請寫出所有真命題的序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com