【題目】如圖所示在四棱錐中,下底面
為正方形,平面
平面
,
為以
為斜邊的等腰直角三角形,
,若點
是線段
上的中點.
(1)證明平面
.
(2)求二面角的平面角的余弦值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以原點O為極點,x正半軸為極軸建立極坐標系,曲線的極坐標方程為
.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設P(0,-1),直線l與C的交點為M,N,線段MN的中點為Q,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發展理念和提高生態環境的保護意識,高二年級準備成立一個環境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環保知識競賽.
(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件
發生的概率;
(2)用表示抽取的4人中文科女生的人數,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是偶函數,
.
(1)求的值,并判斷函數
在
上的單調性,說明理由;
(2)設,若函數
與
的圖像有且僅有一個交點,求實數
的取值范圍;
(3)定義在上的一個函數
,如果存在一個常數
,使得式子
對一切大于1的自然數
都成立,則稱函數
為“
上的
函數”(其中,
).試判斷函數
是否為“
上的
函數”,若是,則求出
的最小值;若不是,則說明理由.(注:
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在一次期末數學測試中,為統計學生的考試情況,從學校的2000名學生中隨機抽取50名學生的考試成績,被測學生成績全部介于65分到145分之間(滿分150分),將統計結果按如下方式分成八組:第一組,
,第二組
,
,
第八組
,
,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數據估計該校的2000名學生這次考試成績的平均分(同一組中的數據用該組區間的中點值代表該組數據平均值);
(3)若從樣本成績屬于第六組和第八組的所有學生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修;坐標系與參數方程
在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,已知某圓的極坐標方程為:
.
(Ⅰ)將極坐標方程化為普通方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com