【題目】已知函數(
).
(1)證明:當時,
在
上是增函數;
(2)是否存在實數,只有唯一正數
,對任意正數
,使不等式
恒成立?若存在,求出這樣的
;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】設拋物線C:的焦點為F,經過點F的直線與拋物線交于A、B兩點.
(1)若,求線段
中點M的軌跡方程;
(2)若直線AB的方向向量為,當焦點為
時,求
的面積;
(3)若M是拋物線C準線上的點,求證:直線的斜率成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是定義在
上的函數,若存在
,使得
在
單調遞增,在
上單調遞減,則稱
為
上的單峰函數,
為峰點,包含峰點的區間稱為含峰區間,其含峰區間的長度為:
.
(1)判斷下列函數中,哪些是“上的單峰函數”?若是,指出峰點;若不是,說出原因;
;
(2)若函數是
上的單峰函數,求實數
的取值范圍;
(3)若函數是區間
上的單峰函數,證明:對于任意的
,若
,則
為含峰區間;若
,則
為含峰區間;試問當
滿足何種條件時,所確定的含峰區間的長度不大于0.6.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,給出以下四個命題,其中真命題的序號是_______.
①時,
單調遞減且沒有最值;
②方程一定有解;
③如果方程有解,則解的個數一定是偶數;
④是偶函數且有最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數
描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(),
表示對該學科知識的掌握程度,正實數a與學科知識有關.
(1) 證明:當時,掌握程度的增加量
總是下降;
(2) 根據經驗,學科甲、乙、丙對應的a的取值區間分別為,
,
.當學習某學科知識6次時,掌握程度是85%,請確定相應的學科.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結束.若中獎,則通過拋一枚質地均勻的硬幣,決定是否繼續進行第二次抽獎,規定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com