精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(1)證明在區間內有且僅有唯一實根;

(2)記在區間內的實根為,函數,若方程在區間有兩不等實根,證明

【答案】(1)證明見解析;(2)證明見解析

【解析】

(1)構造函數,利用導數證明上單調遞增,再結合零點定理即可得證;

(2)先理解題意,為取小函數,先確定函數,的單調性,

再將證明命題轉化為證明命題,即證,再構造函數利用導數證明即可.

(1)證明:,定義域為,而.故,即上單調遞增,

,而上連續,故在區間有且僅有唯一實根.

(2)由(1)知,當時,,且存在,使得

,故,

時,,因而單增;當時,,因而遞減;則. 要證:,只要證 ,因為 ,只要證,即證, 而上遞減,故可證,又由,即證,即,

,,

,當時,;時,,,從而,因此,

單增,從而時,,即,

,所以

故命題得證.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校在一次期末數學測試中,為統計學生的考試情況,從學校的2000名學生中隨機抽取50名學生的考試成績,被測學生成績全部介于65分到145分之間(滿分150分),將統計結果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)求第七組的頻率,并完成頻率分布直方圖;

(2)用樣本數據估計該校的2000名學生這次考試成績的平均分(同一組中的數據用該組區間的中點值代表該組數據平均值);

(3)若從樣本成績屬于第六組和第八組的所有學生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修;坐標系與參數方程

在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知某圓的極坐標方程為:

)將極坐標方程化為普通方程;

)若點P(x,y)在該圓上,求xy的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費用不超過9萬元,甲、乙電視臺的廣告費標準分別是500/分鐘和200元分鐘,假設甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元

A.72B.80C.84D.90

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次田徑比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示。

若將運動員按成績由好到差編為135號,再用系統抽樣方法從中抽取5人,則其中成績在區間上的運動員人數為

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】南充高中扎實推進陽光體育運動,積極引導學生走向操場,走進大自然,參加體育鍛煉,每天上午第三節課后全校大課間活動時長35分鐘.現為了了解學生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調查,按平均每日體育鍛煉時間分組統計如下表:

分組

男生人數

2

16

19

18

5

3

女生人數

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時間不低于120分鐘的學生稱為鍛煉達人”.

1)將頻率視為概率,估計我校7000名學生中鍛煉達人有多少?

2)從這100名學生的鍛煉達人中按性別分層抽取5人參加某項體育活動.

①求男生和女生各抽取了多少人;

②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】魯班鎖是中國傳統的智力玩具,起源于古代漢族建筑中首創的榫卯結構,這種三維的拼插器具內部的凹凸部分(即榫卯結構)嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱,從外表上看,六根等長的正四棱柱分成三組,經榫卯起來,如圖,若正四棱柱的高為,底面正方形的邊長為,現將該魯班鎖放進一個球形容器內,則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計)

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某旅游勝地欲開發一座景觀山,從山的側面進行勘測,迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點、開口向下,所在的拋物線以為頂點、開口向上,以過山腳(點)的水平線為軸,過山頂(點)的鉛垂線為軸建立平面直角坐標系如圖(單位:百米).已知所在拋物線的解析式,所在拋物線的解析式為

(1)求值,并寫出山坡線的函數解析式;

(2)在山坡上的700米高度(點)處恰好有一小塊平地,可以用來建造索道站,索道的起點選擇在山腳水平線上的點處,(米),假設索道可近似地看成一段以為頂點、開口向上的拋物線當索道在上方時,索道的懸空高度有最大值,試求索道的最大懸空高度;

(3)為了便于旅游觀景,擬從山頂開始、沿迎面山坡往山下鋪設觀景臺階,臺階每級的高度為20厘米,長度因坡度的大小而定,但不得少于20厘米,每級臺階的兩端點在坡面上(見圖).試求出前三級臺階的長度(精確到厘米),并判斷這種臺階能否一直鋪到山腳,簡述理由?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视