科目:高中數學 來源:2014屆湖北孝感高中高三年級九月調研考試理科數學試卷(解析版) 題型:解答題
已知函數的定義域為
,若
在
上為增函數,則稱
為“一階比增函數”;若
在
上為增函數,則稱
為“二階比增函數”.我們把所有“一階比增函數”組成的集合記為
,所有“二階比增函數”組成的集合記為
.
(Ⅰ)已知函數,若
且
,求實數
的取值范圍;
(Ⅱ)已知,
且
的部分函數值由下表給出,
|
|
|
|
|
|
|
|
|
|
求證:;
(Ⅲ)定義集合
請問:是否存在常數,使得
,
,有
成立?若存在,求出
的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知函數的定義域為
,若
在
上為增函數,則稱
為“一階比增函數”;若
在
上為增函數,則稱
為“二階比增函數”.
我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為
.
(Ⅰ)已知函數,若
且
,求實數
的取值范圍;
(Ⅱ)已知,
且
的部分函數值由下表給出,
| | | | |
| | | | |
求證:;
(Ⅲ)定義集合
請問:是否存在常數,使得
,
,有
成立?若存在,求出
的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知函數的定義域為
,若
在
上為增函數,則稱
為“一階比增函數”;若
在
上為增函數,則稱
為“二階比增函數”.
我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為
.
(Ⅰ)已知函數,若
且
,求實數
的取值范圍;
(Ⅱ)已知,
且
的部分函數值由下表給出,
| | | | |
| | | |
求證:;
(Ⅲ)定義集合
請問:是否存在常數,使得
,
,有
成立?若存在,求出
的最小值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com