精英家教網 > 高中數學 > 題目詳情
15、[理]用1,2,3,4,5,6組成六位數(沒有重復數字),要求任何相鄰兩個數字的奇偶性不同,且1和2相鄰,這樣的六位數的個數是(  )
分析:由題意知本題需要分類來解,若個位數是偶數,當2在個位時,則1在十位,當2不在個位時,共有A12•A12•A22•A22,得到個位是偶數時共有4+16個六位數,同理若個位數是奇數,有20個滿足條件的六位數,根據分類計數原理得到結果.
解答:解:由題意知本題需要分類來解,
若個位數是偶數,當2在個位時,則1在十位,共有A22A22=4(個),
當2不在個位時,共有A12•A12•A22•A22=16(個),
∴若個位是偶數,有4+16=20個六位數
同理若個位數是奇數,有20個滿足條件的六位數,
∴這樣的六位數的個數是40.
故選A
點評:數字問題是排列中的一大類問題,條件變換多樣,把排列問題包含在數字問題中,解題的關鍵是看清題目的實質,很多題目要分類討論,要做到不重不漏.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(08年浙江卷理)用1,2,3,4,5,6組成六位數(沒有重復數字),要求任何相鄰兩個數字的奇偶性不同,且1和2相鄰,這樣的六位數的個數是________(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:

(浙江卷理16文17)用1,2,3,4,5,6組成六位數(沒有重復數字),要求任何相鄰兩個數字的奇偶性不同,且1和2相鄰,這樣的六位數的個數是__________(用數字作答)。

查看答案和解析>>

科目:高中數學 來源: 題型:

(浙江卷理16文17)用1,2,3,4,5,6組成六位數(沒有重復數字),要求任何相鄰兩個數字的奇偶性不同,且1和2相鄰,這樣的六位數的個數是__________(用數字作答)。

查看答案和解析>>

科目:高中數學 來源:河北省鄭口中學2009-2010學年下學期高二年級期末考試 題型:選擇題

 (理)用1、2、3、4、5、6中的兩個數分別作為對數的底數和真數,則得到的不同的對數值共有              (    )

    A.30個 B.21個 C.20個 D.15個

(文)一人打靶時連續射擊兩次,事件“至少有一次中靶”的互斥事件是    (    )

    A.至多有一次中靶       B.兩次都中靶

    C.只有一次中靶     D.兩次都不中靶

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视