(本題滿分12分)
如圖,在四棱錐中,底面
為平行四邊形,
平面
,
在棱
上.
(I)當時,求證
平面
(II)當二面角的大小為
時,求直線
與平面
所成角的正弦值.
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)
如圖所示是一個半圓柱與三棱柱
的組合體,其中,圓柱
的軸截面
是邊長為4的正方形,
為等腰直角三角形,
.
試在給出的坐標紙上畫出此組合體的三視圖.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分別是AB、CD上的點,且EF∥BC。設AE =
,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(1)當=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,求
的最大值;
(3)當取得最大值時,求二面角D-BF-E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,長方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點.
(1)求證:平面平面
;
(2)在底面A1D1上有一個靠近D1的四等分點H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)如圖,四棱錐P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,點E是PC的中點,F在AD上且AF:FD=1:2.建立適當坐標系.
(1)求EF的長;
(2)證明:EF⊥PC.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四面體ABCD中,O、E分別是BD、BC的中點
(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點E到平面ACD的距離。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖,在直三棱柱(側棱垂直于底面的棱柱)中,
,
,
,
,點
是
的中點.
(Ⅰ) 求證:∥平面
;
(Ⅱ)求AC1與平面CC1B1B所成的角.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,直角梯形與等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.
(1)求證:;
(2)求直線與平面
所成角的正弦值;
(3)線段上是否存在點
,使
// 平面
?若存在,求出
;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com