如圖:四邊形是梯形,
,
,三角形
是等邊三角形,且平面
平面
,
,
,
(1)求證:平面
;
(2)求二面角的余弦值.
科目:高中數學 來源: 題型:解答題
如圖,五面體中,四邊形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,
,P、Q、M分別為AE、BD、EF的中點.
求證:(I)PQ//平面BCE;
(II)求證:AM平面ADF;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖1,在直角梯形中,
,
,
,
. 把
沿對角線
折起到
的位置,如圖2所示,使得點
在平面
上的正投影
恰好落在線段
上,連接
,點
分別為線段
的中點.
(1)求證:平面平面
;
(2)求直線與平面
所成角的正弦值;
(3)在棱上是否存在一點
,使得
到點
四點的距離相等?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角.
(1)求BC的長度;
(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的張角分別為,
,問點P在何處時,
最。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(1)證明:AC⊥B1D;
(2)求直線B1C1與平面ACD1所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=
。
(I)若M為PA中點,求證:AC∥平面MDE;
(II)求直線PA與平面PBC所成角的正弦值;
(III)在線段PC上是否存在一點Q(除去端點),使得平面QAD與平面PBC所成銳二面角的大小為?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com