精英家教網 > 高中數學 > 題目詳情

【題目】已知命題;命題:關于的方程有兩個不同的實數根.

(1)若為真命題,求實數的取值范圍;

為真命題,為假命題,求實數的取值范圍.

【答案】(1); (2).

【解析】

(1)根據對數函數的性質可得命題為真的等價命題為,由判別式大于零可得命題為真的等價命題,根據真,列不等式求解即可;(2)為真命題,為假命題,可得一真一假,分兩種情況討論,對于假以及真分別列不等式組,分別解不等式組,然后求并集即可求得實數的取值范圍.

(1)令,則函數上是增函數,

故當時,最大值為.

當命題為真時,則,解得.

當命題為真時,則,解得.

為真,則真,

,解得

即實數的取值范圍為.

(2)若為真命題,為假命題,則一真一假,

假,則,解得;

真,則,解得.

綜上所述,實數的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了解某冷飲店的經營狀況,隨機記錄了該店月的月營業額(單位:萬元)與月份的數據,如下表:

(1)求關于的回歸直線方程;

(2)若在這樣本點中任取兩點,求恰有一點在回歸直線上的概率.

附:回歸直線方程中,

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】通常用、、分別表示的三個內角、所對的邊長,表示的外接圓半徑.

1)如圖,在以為圓心,半徑為的圓中,、是圓的弦,其中,,角是銳角,求弦的長;

2)在中,若是鈍角,求證:

3)給定三個正實數、、,其中,問、滿足怎樣的關系時,以、為邊長,為外接圓半徑的不存在、存在一個或存在兩個(全等的三角形算作同一個)?在存在的情況下,用、、表示.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為進行“陽光運動一小時”活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地。如圖,點上,點上,且點在斜邊上,已知米,米,,設矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正的常數).

(1)試用表示,并指出如何設計矩形的長和寬,才能使得矩形的面積最大,且求出的最大值;

(2)求總造價關于面積的函數,說明如何選取,使總造價最低(不要求求出最低造價).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018屆天津市耀華中學高三上學期第三次月考】已知橢圓的一個焦點在直線上,且離心率.

1)求該橢圓的方程;

2)若是該橢圓上不同的兩點,且線段的中點在直線上,試證: 軸上存在定點,對于所有滿足條件的,恒有;

3)在(2)的條件下, 能否為等腰直角三角形?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于的不等式的解集為的解集為.

1)試求;

2)是否存在實數,使得?若存在,求的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.

(1)求拋物線方程;

(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數處的切線與直線平行.

1)求實數

2)求函數的單調區間;

3)設,, 恒成立,求整數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數有兩個極值點.

(1)求實數的取值范圍;

(2)設,若函數的兩個極值點恰為函數的兩個零點,當時,求的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视