【題目】已知數列
滿足
;數列
滿足
;數列
為公比大于1的等比數列,且
,
為方程
的兩個不相等的實根.
(1)求數列和數列
的通項公式;
(2)將數列中的第
項,第
項,第
項,……,第
項,……刪去后剩余的項按從小到大的順序排成新數列
,求數列
的前2013項和.
科目:高中數學 來源: 題型:
【題目】已知函數,
,函數
,記
.把函數
的最大值
稱為函數
的“線性擬合度”.
(1)設函數,
,
,求此時函數
的“線性擬合度”
;
(2)若函數,
的值域為
(
),
,求證:
;
(3)設,
,求
的值,使得函數
的“線性擬合度”
最小,并求出
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E:過點(0,1)且離心率
.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設動直線l與兩定直線l1:x﹣y=0和l2:x+y=0分別交于P,Q兩點.若直線l總與橢圓E有且只有一個公共點,試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為正整數,若兩個項數都不小于
的數列
,
滿足:存在正數
,當
且
時,都有
,則稱數列
,
是“
接近的”.已知無窮等比數列
滿足
,無窮數列
的前
項和為
,
,且
,
.
(1)求數列通項公式;
(2)求證:對任意正整數,數列
,
是“
接近的”;
(3)給定正整數,數列
,
(其中
)是“
接近的”,求
的最小值,并求出此時的
(均用
表示).(參考數據:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應綠色出行,某市在推出“共享單車”后,又推出“新能源分時租賃汽車”.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:①根據行駛里程數按1元/公里計費;②行駛時間不超過分時,按
元/分計費;超過
分時,超出部分按
元/分計費.已知王先生家離上班地點
公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間
(分)是一個隨機變量.現統計了
次路上開車花費時間,在各時間段內的頻數分布情況如下表所示:
時間 | ||||
頻數 |
將各時間段發生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費用
(元)與用車時間
(分)的函數關系式;(2)若王先生一次開車時間不超過
分為“路段暢通”,設
表示3次租用新能源分時租賃汽車中“路段暢通”的次數,求的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應綠色出行,某市在推出“共享單車”后,又推出“新能源分時租賃汽車”.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:①根據行駛里程數按1元/公里計費;②行駛時間不超過分時,按
元/分計費;超過
分時,超出部分按
元/分計費.已知王先生家離上班地點
公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間
(分)是一個隨機變量.現統計了
次路上開車花費時間,在各時間段內的頻數分布情況如下表所示:
時間 | ||||
頻數 |
將各時間段發生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費用
(元)與用車時間
(分)的函數關系式;(2)若王先生一次開車時間不超過
分為“路段暢通”,設
表示3次租用新能源分時租賃汽車中“路段暢通”的次數,求的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點分別是棱長為2的正方體
的棱
的中點.如圖,以
為坐標原點,射線
、
、
分別是
軸、
軸、
軸的正半軸,建立空間直角坐標系.
(1)求向量與
的數量積;
(2)若點分別是線段
與線段
上的點,問是否存在直線
,
平面
?若存在,求點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的左右焦點分別為F1,F2,離心率為
,A為橢圓C上一點,且AF2⊥F1F2,且|AF2|
.
(1)求橢圓C的方程;
(2)設橢圓C的左右頂點為A1,A2,過A1,A2分別作x軸的垂線 l1,l2,橢圓C的一條切線l:y=kx+m(k≠0)與l1,l2交于M,N兩點,試探究是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com