(12分)(2011•陜西)敘述并證明余弦定理.
見解析
解析試題分析:先利用數學語言準確敘述出余弦定理的內容,并畫出圖形,寫出已知與求證,然后開始證明.
方法一:采用向量法證明,由a的平方等于的平方,利用向量的三角形法則,由
﹣
表示出
,然后利用平面向量的數量積的運算法則化簡后,即可得到a2=b2+c2﹣2bccosA,同理可證b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC;
方法二:采用坐標法證明,方法是以A為原點,AB所在的直線為x軸建立平面直角坐標系,表示出點C和點B的坐標,利用兩點間的距離公式表示出|BC|的平方,化簡后即可得到a2=b2+c2﹣2bccosA,同理可證b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC.
解:余弦定理:三角形任何一邊的平方等于其他兩遍平方的和減去這兩邊與它們夾角的余弦之積的兩倍;或在△ABC中,a,b,c為A,B,C的對邊,有a2=b2+c2﹣2bccosA,b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC.
證法一:如圖,=
=
==b2﹣2bccosA+c2
即a2=b2+c2﹣2bccosA
同理可證b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC;
證法二:已知△ABC中A,B,C所對邊分別為a,b,c,以A為原點,AB所在直線為x軸建立直角坐標系,
則C(bcosA,bsinA),B(c,0),
∴a2=|BC|2=(bcosA﹣c)2+(bsinA)2=b2cos2A﹣2bccosA+c2+b2sin2A=b2+c2﹣2bccosA,
同理可證b2=a2+c2﹣2accosB,c2=a2+b2﹣2abcosC.
點評:此題考查學生會利用向量法和坐標法證明余弦定理,以及對命題形式出現的證明題,要寫出已知求證再進行證明,是一道基礎題.
科目:高中數學 來源: 題型:解答題
如圖,正三角形ABC的邊長為2,D,E,F分別在三邊AB,BC和CA上,且D為AB的中點,,
,
.
(1)當時,求
的大;
(2)求的面積S的最小值及使得S取最小值時
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com